LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

LIGGGHTS Documentation, Version 2.X

CFDEM CFDEM HE&ests DCS

couping ATy

LIGGGHTS

LIGGGHTS stands for LAMMPS Improved for General Granular and Granular Heat Transfer Simulations. It
is part of the CFDEMproject, www.cfdem.com

The core developer of LIGGGHTS is Christoph Kloss (DCS Computing GmbH, Linz and JKU Linz), major
contributions from Philippe Seil, Andreas Aigner and Stefan Amberger (all JKU Linz) and Christoph Goniva
(DCS Computing GmbH, Linz and JKU Linz)

CEDEMproject has more information about the code and its uses. For questions about the code, please use the
forums at CEDEMproject.

LIGGGHTS is based on LAMMPS (see below), and so is its manual.
LIGGGHTS Version info:

All LIGGGHTS versions are based on a specific version of LAMMPS, as printed in the file src/version.h
LIGGGHTS version are identidied by a version number (e.g. '2.0"), a branch name (e.g.
'LIGGGHTS-PUBLIC' for the public release of LIGGGHTS), compilation info (date / time stamp and user
name), and a LAMMPS version number (which is the LAMMPS version that the LIGGGHTS release is based
on). For info on the LAMMPS version, see below.

LAMMPS Version info:

The LAMMPS "version" is the date when it was released, such as 1 May 2010. LAMMPS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this
page of the WWW site. Each dated copy of LAMMPS contains all the features and bug-fixes up to and
including that version date. The version date is printed to the screen and logfile every time you run LAMMPS.
It is also in the file src/version.h and in the LAMMPS directory name created when you unpack a tarball.

e If you browse the HTML doc pages on the LAMMPS WWW site, they always describe the most
current version of LAMMPS.

http://www.cfdem.com
http://lammps.sandia.gov
http://www.cfdem.com
http://www.cfdem.com
http://www.cfdem.com
http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html

¢ If you browse the HTML doc pages included in your tarball, they describe the version you have.

¢ The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of very patch.

e There is also a Developer.pdf file in the doc directory, which describes the internal structure and
algorithms of LAMMPS.

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open-source code, distributed freely under the terms of the GNU Public
License (GPL).

The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul Crozier who can be
contacted at sjplimp,athomps,pscrozi at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov
has more information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at
Section_commands.html#comm since it gives quick access to documentation for all LAMMPS commands.

PDF file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features

1.4 Open source distribution
1.5 Acknowledgments and citations
2. Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library
2.6 Running LAMMPS
2.7 Command-line options
2.8 Screen output
2.9 Tips for users of previous versions
3. Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically
4. Packages
4.1 Standard packages
4.2 User packages
5. Accelerating LAMMPS performance
5.1 OPT package
5.2 USER-OMP package
5.3 GPU package
5.4 USER-CUDA package

5.5 Comparison of GPU and USER-CUDA packages
6. How-to discussions

http://www.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://www.easysw.com/htmldoc

6.1 Restarting a simulation
6.2 2d simulations

6.3 CHARMM and AMBER force fields

6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations

6.6 Granular models

6.7 TIP3P water model

6.8 TIP4P water model

6.9 SPC water model

6.10 Coupling LAMMPS to other codes

6.11 Visualizing LAMMPS snapshots

6.12 Triclinic (non-orthogonal) simulation boxes

6.13 NEMD simulations

6.14 Extended spherical and aspherical particles

6.15 Output from LAMMPS (thermo. dumps. computes. fixes. variables)

6.16 Thermostatting. barostatting. and compute temperature
6.17 Walls

6.18 Elastic constants

6.19 Library interface to LAMMPS
6.20 Calculating thermal conductivity
6.21 Calculating viscosity
7. Example problems
8. Performance & scalability
9. Additional tools
0. Modifying & extending LAMMPS
10.1 Atom styles
10.2 Bond. angle. dihedral. improper potentials
10.3 Compute styles
10.4 Dump styles
10.5 Dump custom output options
10.6 Fix styles
10.7 Input script commands
10.8 Kspace computations
10.9 Minimization styles
10.10 Pairwise potentials
10.11 Region styles
10.12 Thermodynamic output options
10.13 Variable options
10.14 Submitting new features for inclusion in LAMMPS
11. Python interface
11.1 Extending Python with a serial version of LAMMPS
11.2 Creating a shared MPI library
11.3 Extending Python with a parallel version of LAMMPS
11.4 Extending Python with MPI
11.5 Testing the Python-LAMMPS interface
11.6 Using LAMMPS from Python
11.7 Example Python scripts that use LAMMPS
12. Errors
12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages
13. Future and history
13.1 Coming attractions

13.2 Past versions

1

LIGGGHTS Users Manual
LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

LIGGGHTS Documentation, Version 2.X

CFDEM CFDEM MES&HTS DCS

projact couping sl

LIGGGHTS

LIGGGHTS stands for LAMMPS Improved for General Granular and Granular Heat Transfer Simulations. It
is part of the CFDEMproject, www.cfdem.com

The core developer of LIGGGHTS is Christoph Kloss (DCS Computing GmbH, Linz and JKU Linz), major
contributions from Philippe Seil, Andreas Aigner and Stefan Amberger (all JKU Linz) and Christoph Goniva
(DCS Computing GmbH, Linz and JKU Linz)

CEDEMDproject has more information about the code and its uses. For questions about the code, please use the
forums at CEDEMproject.

LIGGGHTS is based on LAMMPS (see below), and so is its manual.

LIGGGHTS Version info:

All LIGGGHTS versions are based on a specific version of LAMMPS, as printed in the file src/version.h
LIGGGHTS version are identidied by a version number (e.g. '2.0"), a branch name (e.g.
'LIGGGHTS-PUBLIC' for the public release of LIGGGHTS), compilation info (date / time stamp and user
name), and a LAMMPS version number (which is the LAMMPS version that the LIGGGHTS release is based
on). For info on the LAMMPS version, see below.

LAMMPS Version info:

The LAMMPS "version" is the date when it was released, such as 1 May 2010. LAMMPS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this
page of the WWW site. Each dated copy of LAMMPS contains all the features and bug-fixes up to and
including that version date. The version date is printed to the screen and logfile every time you run LAMMPS.
It is also in the file src/version.h and in the LAMMPS directory name created when you unpack a tarball.

LIGGGHTS Documentation, Version 2.X 1

http://www.cfdem.com
http://lammps.sandia.gov
http://www.cfdem.com
http://www.cfdem.com
http://www.cfdem.com
http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html

LIGGGHTS Users Manual

e If you browse the HTML doc pages on the LAMMPS WWW site, they always describe the most
current version of LAMMPS.

e If you browse the HTML doc pages included in your tarball, they describe the version you have.

¢ The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of very patch.

® There is also a Developer.pdf file in the doc directory, which describes the internal structure and
algorithms of LAMMPS.

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open-source code, distributed freely under the terms of the GNU Public
License (GPL).

The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul Crozier who can be
contacted at sjplimp,athomps,pscrozi at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov
has more information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at
Section_commands.html#comm since it gives quick access to documentation for all LAMMPS commands.

PDEF file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features

1.4 Open source distribution
1.5 Acknowledgments and citations
2. Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library
2.6 Running LAMMPS
2.7 Command-line options
2.8 Screen output
2.9 Tips for users of previous versions
3. Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically
4. Packages
4.1 Standard packages
4.2 User packages
5. Accelerating LAMMPS performance

LAMMPS Version info: 2

http://www.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://www.easysw.com/htmldoc

LIGGGHTS Users Manual

5.1 OPT package

5.2 USER-OMP package

5.3 GPU package

5.4 USER-CUDA package

5.5 Comparison of GPU and USER-CUDA packages
6. How-to discussions

6.1 Restarting a simulation

6.2 2d simulations

6.3 CHARMM and AMBER force fields

6.4 Running multiple simulations from one input script

6.5 Multi-replica simulations
6.6 Granular models

6.7 TIP3P water model
6.8 TIP4P water model
6.9 SPC water model

6.10 Coupling LAMMPS to other codes

6.11 Visualizing LAMMPS snapshots

6.12 Triclinic (non-orthogonal) simulation boxes

6.13 NEMD simulations

6.14 Extended spherical and aspherical particles

6.15 Output from LAMMPS (thermo. dumps. computes. fixes. variables)

6.16 Thermostatting. barostatting, and compute temperature
6.17 Walls

6.18 Elastic constants

6.19 Library interface to LAMMPS
6.20 Calculating thermal conductivity
6.21 Calculating viscosity
7. Example problems
8. Performance & scalability
9. Additional tools
0. Modifying & extending LAMMPS
10.1 Atom styles
10.2 Bond. angle. dihedral. improper potentials
10.3 Compute styles
10.4 Dump styles
10.5 Dump custom output options
10.6 Fix styles
10.7 Input script commands
10.8 Kspace computations
10.9 Minimization styles
10.10 Pairwise potentials
10.11 Region styles
10.12 Thermodynamic output options
10.13 Variable options
10.14 Submitting new features for inclusion in LAMMPS
11. Python interface
11.1 Extending Python with a serial version of LAMMPS
11.2 Creating a shared MPI library
11.3 Extending Python with a parallel version of LAMMPS
11.4 Extending Python with MPI
11.5 Testing the Python-LAMMPS interface
11.6 Using LAMMPS from Python

11.7 Example Python scripts that use LAMMPS
12. Errors

1

LAMMPS Version info:

LIGGGHTS Users Manual

12.1 Common problems

12.2 Reporting bugs

12.3 Error & warning messages
13. Future and history

13.1 Coming attractions
13.2 Past versions

LAMMPS Version info:

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

5. Accelerating LAMMPS performance

This section describes various methods for improving LAMMPS performance for different classes of
problems running on different kinds of machines.

5.1 OPT package

5.2 USER-OMP package

5.3 GPU package

5.4 USER-CUDA package

5.5 Comparison of GPU and USER-CUDA packages

Accelerated versions of various pair_style, fixes, computes, and other commands have been added to
LAMMPS, which will typically run faster than the standard non-accelerated versions, if you have the
appropriate hardware on your system.

The accelerated styles have the same name as the standard styles, except that a suffix is appended. Otherwise,
the syntax for the command is identical, their functionality is the same, and the numerical results it produces
should also be identical, except for precision and round-off issues.

For example, all of these variants of the basic Lennard-Jones pair style exist in LAMMPS:

® pair style lj/cut

® pair style lj/cut/opt
® pair style lj/cut/om
® pair style lj/cut/gpu

® pair_style lj/cut/cuda

Assuming you have built LAMMPS with the appropriate package, these styles can be invoked by specifying
them explicitly in your input script. Or you can use the -suffix command-line switch to invoke the accelerated
versions automatically, without changing your input script. The suffix command allows you to set a suffix
explicitly and to turn off/on the comand-line switch setting, both from within your input script.

Styles with an "opt" suffix are part of the OPT package and typically speed-up the pairwise calculations of
your simulation by 5-25%.

Styles with an "omp" suffix are part of the USER-OMP package and allow a pair-style to be run in
multi-threaded mode using OpenMP. This can be useful on nodes with high-core counts when using less MPI
processes than cores is advantageous, e.g. when running with PPPM so that FFTs are run on fewer MPI
processors or when the many MPI tasks would overload the available bandwidth for communication.

Styles with a "gpu" or "cuda" suffix are part of the GPU or USER-CUDA packages, and can be run on
NVIDIA GPUs associated with your CPUs. The speed-up due to GPU usage depends on a variety of factors,

as discussed below.

To see what styles are currently available in each of the accelerated packages, see Section commands 5 of the
manual. A list of accelerated styles is included in the pair, fix, compute, and kspace sections.

The following sections explain:
e what hardware and software the accelerated styles require

¢ how to build LAMMPS with the accelerated packages in place
e what changes (if any) are needed in your input scripts

5. Accelerating LAMMPS performance 5

http://lammps.sandia.gov

LIGGGHTS Users Manual

e guidelines for best performance
e speed-ups you can expect

The final section compares and contrasts the GPU and USER-CUDA packages, since they are both designed
to use NVIDIA GPU hardware.

5.1 OPT package

The OPT package was developed by James Fischer (High Performance Technologies), David Richie, and
Vincent Natoli (Stone Ridge Technologies). It contains a handful of pair styles whose compute() methods
were rewritten in C++ templated form to reduce the overhead due to if tests and other conditional code.

The procedure for building LAMMPS with the OPT package is simple. It is the same as for any other package
which has no additional library dependencies:

make yes—-opt
make machine

If your input script uses one of the OPT pair styles, you can run it as follows:

Imp_machine -sf opt <in.script
mpirun -np 4 lmp_machine -sf opt <in.script

You should see a reduction in the "Pair time" printed out at the end of the run. On most machines and
problems, this will typically be a 5 to 20% savings.

5.2 USER-OMP package

The USER-OMP package was developed by Axel Kohlmeyer at Temple University. It provides
multi-threaded versions of most pair styles, all dihedral styles and a few fixes in LAMMPS. The package
currently uses the OpenMP interface which requires using a specific compiler flag in the makefile to enable
multiple threads; without this flag the corresponding pair styles will still be compiled and work, but do not
support multi-threading.

Building LAMMPS with the USER-OMP package:

The procedure for building LAMMPS with the USER-OMP package is simple. You have to edit your
machine specific makefile to add the flag to enable OpenMP support to the CCFLAGS and LINKFLAGS
variables. For the GNU compilers for example this flag is called -fopenmp. Check your compiler
documentation to find out which flag you need to add. The rest of the compilation is the same as for any other
package which has no additional library dependencies:

make yes—-user—-omp
make machine

Please note that this will only install accelerated versions of styles that are already installed, so you want to
install this package as the last package, or else you may be missing some accelerated styles. If you plan to
uninstall some package, you should first uninstall the USER-OMP package then the other package and then
re-install USER-OMP, to make sure that there are no orphaned omp style files present, which would lead to
compilation errors.

If your input script uses one of regular styles that are also exist as an OpenMP version in the USER-OMP
package you can run it as follows:

5.1 OPT package 6

LIGGGHTS Users Manual

env OMP_NUM_THREADS=4 1lmp_serial -sf omp -in in.script
env OMP_NUM_THREADS=2 mpirun -np 2 lmp_machine -sf omp -in in.script
mpirun -x OMP_NUM_THREADS=2 -np 2 lmp_machine -sf omp -in in.script

The value of the environment variable OMP_NUM_THREADS determines how many threads per MPI task
are launched. All three examples above use a total of 4 CPU cores. For different MPI implementations the
method to pass the OMP_NUM_THREADS environment variable to all processes is different. Two different
variants, one for MPICH and OpenMPI, respectively are shown above. Please check the documentation of
your MPI installation for additional details. Alternatively, the value provided by OMP_NUM_THREADS can
be overridded with the package omp command. Depending on which styles are accelerated in your input, you
should see a reduction in the "Pair time" and/or "Bond time" and "Loop time" printed out at the end of the run.
The optimal ratio of MPI to OpenMP can vary a lot and should always be confirmed through some benchmark
runs for the current system and on the current machine.

Restrictions:
None of the pair styles in the USER-OMP package support the "inner", "middle", "outer" options for
r-RESPA integration, only the "pair" option is supported.

Parallel efficiency and performance tips:

In most simple cases the MPI parallelization in LAMMPS is more efficient than multi-threading implemented
in the USER-OMP package. Also the parallel efficiency varies between individual styles. On the other hand,
in many cases you still want to use the omp version - even when compiling or running without OpenMP
support - since they all contain optimizations similar to those in the OPT package, which can result in serial
speedup.

Using multi-threading is most effective under the following circumstances:

¢ Individual compute nodes have a significant number of CPU cores but the CPU itself has limited
memory bandwidth, e.g. Intel Xeon 53xx (Clovertown) and 54xx (Harpertown) quad core processors.
Running one MPI task per CPU core will result in significant performance degradation, so that
running with 4 or even only 2 MPI tasks per nodes is faster. Running in hybrid MPI+OpenMP mode
will reduce the inter-node communication bandwidth contention in the same way, but offers and
additional speedup from utilizing the otherwise idle CPU cores.
¢ The interconnect used for MPI communication is not able to provide sufficient bandwidth for a large
number of MPI tasks per node. This applies for example to running over gigabit ethernet or on Cray
XT4 or XTS5 series supercomputers. Same as in the aforementioned case this effect worsens with
using an increasing number of nodes.
The input is a system that has an inhomogeneous particle density which cannot be mapped well to the
domain decomposition scheme that LAMMPS employs. While this can be to some degree alleviated
through using the processors keyword, multi-threading provides a parallelism that parallelizes over
the number of particles not their distribution in space.
Finally, multi-threaded styles can improve performance when running LAMMPS in "capability
mode", i.e. near the point where the MPI parallelism scales out. This can happen in particular when
using as kspace style for long-range electrostatics. Here the scaling of the kspace style is the
performance limiting factor and using multi-threaded styles allows to operate the kspace style at the
limit of scaling and then increase performance parallelizing the real space calculations with hybrid
MPI+OpenMP. Sometimes additional speedup can be achived by increasing the real-space coulomb
cutoff and thus reducing the work in the kspace part.

The best parallel efficiency from omp styles is typically achieved when there is at least one MPI task per
physical processor, i.e. socket or die.

5.2 USER-OMP package 7

LIGGGHTS Users Manual

Using threads on hyper-threading enabled cores is usually counterproductive, as the cost in additional memory
bandwidth requirements is not offset by the gain in CPU utilization through hyper-threading.

A description of the multi-threading strategy and some performance examples are presented here

5.3 GPU package

The GPU package was developed by Mike Brown at ORNL. It provides GPU versions of several pair styles
and for long-range Coulombics via the PPPM command. It has the following features:

¢ The package is designed to exploit common GPU hardware configurations where one or more GPUs
are coupled with many cores of a multi-core CPUs, e.g. within a node of a parallel machine.

¢ Atom-based data (e.g. coordinates, forces) moves back-and-forth between the CPU(s) and GPU every
timestep.

¢ Neighbor lists can be constructed on the CPU or on the GPU

¢ The charge assignement and force interpolation portions of PPPM can be run on the GPU. The FFT
portion, which requires MPI communication between processors, runs on the CPU.

¢ Asynchronous force computations can be performed simultaneously on the CPU(s) and GPU.

e L AMMPS-specific code is in the GPU package. It makes calls to a generic GPU library in the lib/gpu
directory. This library provides NVIDIA support as well as more general OpenCL support, so that the
same functionality can eventually be supported on a variety of GPU hardware.

Hardware and software requirements:

To use this package, you currently need to have specific NVIDIA hardware and install specific NVIDIA
CUDA software on your system:

® Check if you have an NVIDIA card: cat /proc/driver/nvidia/cards/0

¢ Go to http://www.nvidia.com/object/cuda_get.html

¢ Install a driver and toolkit appropriate for your system (SDK is not necessary)

¢ Follow the instructions in lammps/lib/gpu/README to build the library (see below)
¢ Run lammps/lib/gpu/nvc_get_devices to list supported devices and properties

Building LAMMPS with the GPU package:

As with other packages that include a separately compiled library, you need to first build the GPU library,
before building LAMMPS itself. General instructions for doing this are in this section of the manual. For this
package, do the following, using a Makefile in lib/gpu appropriate for your system:

cd lammps/lib/gpu
make —-f Makefile.linux
(see further instructions in lammps/lib/gpu/README)

If you are successful, you will produce the file lib/libgpu.a.

Now you are ready to build LAMMPS with the GPU package installed:

cd lammps/src
make yes—gpu
make machine

Note that the lo-level Makefile (e.g. src/MAKE/Makefile.linux) has these settings: gpu_SYSINC,
gpu_SYSLIB, gpu_SYSPATH. These need to be set appropriately to include the paths and settings for the
CUDA system software on your machine. See src/MAKE/Makefile.g++ for an example.

5.3 GPU package 8

http://sites.google.com/site/akohlmey/software/lammps-icms/lammps-icms-tms2011-talk.pdf?attredirects=0&d=1

LIGGGHTS Users Manual

GPU configuration

When using GPUs, you are restricted to one physical GPU per LAMMPS process, which is an MPI process
running on a single core or processor. Multiple MPI processes (CPU cores) can share a single GPU, and in
many cases it will be more efficient to run this way.

Input script requirements:
Additional input script requirements to run pair or PPPM styles with a gpu suffix are as follows:

® To invoke specific styles from the GPU package, you can either append "gpu" to the style name (e.g.
pair_style lj/cut/gpu), or use the -suffix command-line switch, or use the suffix command.

¢ The newton pair setting must be off.

® The package gpu command must be used near the beginning of your script to control the GPU
selection and initialization settings. It also has an option to enable asynchronous splitting of force
computations between the CPUs and GPUs.

As an example, if you have two GPUs per node and 8 CPU cores per node, and would like to run on 4 nodes
(32 cores) with dynamic balancing of force calculation across CPU and GPU cores, you could specify

package gpu force/neigh 0 1 -1

In this case, all CPU cores and GPU devices on the nodes would be utilized. Each GPU device would be
shared by 4 CPU cores. The CPU cores would perform force calculations for some fraction of the particles at
the same time the GPUs performed force calculation for the other particles.

Timing output:

As described by the package gpu command, GPU accelerated pair styles can perform computations
asynchronously with CPU computations. The "Pair" time reported by LAMMPS will be the maximum of the
time required to complete the CPU pair style computations and the time required to complete the GPU pair
style computations. Any time spent for GPU-enabled pair styles for computations that run simultaneously
with bond, angle, dihedral, improper, and long-range calculations will not be included in the "Pair" time.

When the mode setting for the package gpu command is force/neigh, the time for neighbor list calculations on
the GPU will be added into the "Pair" time, not the "Neigh" time. An additional breakdown of the times
required for various tasks on the GPU (data copy, neighbor calculations, force computations, etc) are output
only with the LAMMPS screen output (not in the log file) at the end of each run. These timings represent total
time spent on the GPU for each routine, regardless of asynchronous CPU calculations.

Performance tips:

Generally speaking, for best performance, you should use multiple CPUs per GPU, as provided my most
multi-core CPU/GPU configurations.

Because of the large number of cores within each GPU device, it may be more efficient to run on fewer
processes per GPU when the number of particles per MPI process is small (100's of particles); this can be
necessary to keep the GPU cores busy.

See the lammps/lib/gpu/README file for instructions on how to build the GPU library for single, mixed, or
double precision. The latter requires that your GPU card support double precision.

5.3 GPU package 9

LIGGGHTS Users Manual
5.4 USER-CUDA package

The USER-CUDA package was developed by Christian Trott at U Technology Ilmenau in Germany. It
provides NVIDIA GPU versions of many pair styles, many fixes, a few computes, and for long-range
Coulombics via the PPPM command. It has the following features:

® The package is designed to allow an entire LAMMPS calculation, for many timesteps, to run entirely
on the GPU (except for inter-processor MPI communication), so that atom-based data (e.g.
coordinates, forces) do not have to move back-and-forth between the CPU and GPU.

¢ The speed-up advantage of this approach is typically better when the number of atoms per GPU is
large

e Data will stay on the GPU until a timestep where a non-GPU-ized fix or compute is invoked.
Whenever a non-GPU operation occurs (fix, compute, output), data automatically moves back to the
CPU as needed. This may incur a performance penalty, but should otherwise work transparently.

e Neighbor lists for GPU-ized pair styles are constructed on the GPU.

® The package only supports use of a single CPU (core) with each GPU.

Hardware and software requirements:

To use this package, you need to have specific NVIDIA hardware and install specific NVIDIA CUDA
software on your system.

Your NVIDIA GPU needs to support Compute Capability 1.3. This list may help you to find out the Compute
Capability of your card:

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

Install the Nvidia Cuda Toolkit in version 3.2 or higher and the corresponding GPU drivers. The Nvidia Cuda
SDK is not required for LAMMPSCUDA but we recommend it be installed. You can then make sure that its
sample projects can be compiled without problems.

Building LAMMPS with the USER-CUDA package:

As with other packages that include a separately compiled library, you need to first build the USER-CUDA
library, before building LAMMPS itself. General instructions for doing this are in this section of the manual.
For this package, do the following, using settings in the lib/cuda Makefiles appropriate for your system:

¢ Go to the lammps/lib/cuda directory

e If your CUDA toolkit is not installed in the default system directoy /usr/local/cuda edit the file
lib/cuda/Makefile.common accordingly.

® Type "make OPTIONS", where OPTIONS are one or more of the following options. The settings will
be written to the lib/cuda/Makefile.defaults and used in the next step.

precision=N to set the precision level
1 for single precision (default)

N = 2 for double precision
N = 3 for positions in double precision
N = 4 for positions and velocities in double precision

arch=M to set GPU compute capability

M = 20 for CC2.0 (GF100/110, e.g. C2050,GTX580,GTX470) (default)
M = 21 for CC2.1 (GF104/114, e.g. GTX560, GTX460, GTX450)
M = 13 for CCl.3 (GF200, e.g. C1060, GTX285)

prec_timer=0/1 to use hi-precision timers

0 do not use them (default)

1 use these timers

this is usually only useful for Mac machines
dbg=0/1 to activate debug mode

5.4 USER-CUDA package 10

LIGGGHTS Users Manual

0 = no debug mode (default)
1 = yes debug mode
this is only useful for developers
cufft=1 to determine usage of CUDA FFT library
0 = no CUFFT support (default)
in the future other CUDA-enabled FFT libraries might be supported

® Type "make" to build the library. If you are successful, you will produce the file lib/libcuda.a.

Now you are ready to build LAMMPS with the USER-CUDA package installed:

cd lammps/src
make yes-user-cuda
make machine

Note that the LAMMPS build references the lib/cuda/Makefile.common file to extract setting specific CUDA
settings. So it is important that you have first built the cuda library (in lib/cuda) using settings appropriate to
your system.

Input script requirements:
Additional input script requirements to run styles with a cuda suffix are as follows:

¢ To invoke specific styles from the USER-CUDA package, you can either append "cuda" to the style
name (e.g. pair_style lj/cut/cuda), or use the -suffix command-line switch, or use the suffix command.
One exception is that the kspace style pppm/cuda command has to be requested explicitly.

® To use the USER-CUDA package with its default settings, no additional command is needed in your
input script. This is because when LAMMPS starts up, it detects if it has been built with the
USER-CUDA package. See the -cuda command-line switch for more details.

® To change settings for the USER-CUDA package at run-time, the package cuda command can be
used near the beginning of your input script. See the package command doc page for details.

Performance tips:

The USER-CUDA package offers more speed-up relative to CPU performance when the number of atoms per
GPU is large, e.g. on the order of tens or hundreds of 1000s.

As noted above, this package will continue to run a simulation entirely on the GPU(s) (except for
inter-processor MPI communication), for multiple timesteps, until a CPU calculation is required, either by a
fix or compute that is non-GPU-ized, or until output is performed (thermo or dump snapshot or restart file).
The less often this occurs, the faster your simulation will run.

5.5 Comparison of GPU and USER-CUDA packages

Both the GPU and USER-CUDA packages accelerate a LAMMPS calculation using NVIDIA hardware, but
they do it in different ways.

As a consequence, for a particular simulation on specific hardware, one package may be faster than the other.
We give guidelines below, but the best way to determine which package is faster for your input script is to try
both of them on your machine. See the benchmarking section below for examples where this has been done.
Guidelines for using each package optimally:

¢ The GPU package allows you to assign multiple CPUs (cores) to a single GPU (a common

configuration for "hybrid" nodes that contain multicore CPU(s) and GPU(s)) and works effectively in
this mode. The USER-CUDA package does not allow this; you can only use one CPU per GPU.

5.5 Comparison of GPU and USER-CUDA packages 11

LIGGGHTS Users Manual

® The GPU package moves per-atom data (coordinates, forces) back-and-forth between the CPU and
GPU every timestep. The USER-CUDA package only does this on timesteps when a CPU calculation
is required (e.g. to invoke a fix or compute that is non-GPU-ized). Hence, if you can formulate your
input script to only use GPU-ized fixes and computes, and avoid doing I/O too often (thermo output,
dump file snapshots, restart files), then the data transfer cost of the USER-CUDA package can be very
low, causing it to run faster than the GPU package.

® The GPU package is often faster than the USER-CUDA package, if the number of atoms per GPU is
"small". The crossover point, in terms of atoms/GPU at which the USER-CUDA package becomes
faster depends strongly on the pair style. For example, for a simple Lennard Jones system the
crossover (in single precision) is often about 50K-100K atoms per GPU. When performing double
precision calculations the crossover point can be significantly smaller.

¢ Both packages compute bonded interactions (bonds, angles, etc) on the CPU. This means a model
with bonds will force the USER-CUDA package to transfer per-atom data back-and-forth between the
CPU and GPU every timestep. If the GPU package is running with several MPI processes assigned to
one GPU, the cost of computing the bonded interactions is spread across more CPUs and hence the
GPU package can run faster.

® When using the GPU package with multiple CPUs assigned to one GPU, its performance depends to
some extent on high bandwidth between the CPUs and the GPU. Hence its performance is affected if
full 16 PCle lanes are not available for each GPU. In HPC environments this can be the case if
S2050/70 servers are used, where two devices generally share one PCle 2.0 16x slot. Also many
multi-GPU mainboards do not provide full 16 lanes to each of the PCIe 2.0 16x slots.

Differences between the two packages:

e The GPU package accelerates only pair force, neighbor list, and PPPM calculations. The
USER-CUDA package currently supports a wider range of pair styles and can also accelerate many
fix styles and some compute styles, as well as neighbor list and PPPM calculations.

e The USER-CUDA package does not support acceleration for minimization.

® The USER-CUDA package does not support hybrid pair styles.

® The USER-CUDA package can order atoms in the neighbor list differently from run to run resulting
in a different order for force accumulation.

® The USER-CUDA package has a limit on the number of atom types that can be used in a simulation.

® The GPU package requires neighbor lists to be built on the CPU when using exclusion lists or a
triclinic simulation box.

® The GPU package uses more GPU memory than the USER-CUDA package. This is generally not a
problem since typical runs are computation-limited rather than memory-limited.

Examples:

The LAMMPS distribution has two directories with sample input scripts for the GPU and USER-CUDA
packages.

¢ l]ammps/examples/gpu = GPU package files
¢ lammps/examples/USER/cuda = USER-CUDA package files

These contain input scripts for identical systems, so they can be used to benchmark the performance of both
packages on your system.

Benchmark data:

NOTE: We plan to add some benchmark results and plots here for the examples described in the previous
section.

Simulations:

5.5 Comparison of GPU and USER-CUDA packages 12

LIGGGHTS Users Manual

1. Lennard Jones

® 256,000 atoms
e 2.5 A cutoff
¢ (0.844 density

2. Lennard Jones

® 256,000 atoms
® 5.0 A cutoff
¢ (0.844 density

3. Rhodopsin model

® 256,000 atoms
¢ 10A cutoff
e Coulomb via PPPM

4. Lihtium-Phosphate

® 295650 atoms
e |5A cutoff
e Coulomb via PPPM

Hardware:
Workstation:

e 2x GTX470
®i7950@3GHz

¢ 24Gb DDR3 @ 1066Mhz
® CentOS 5.5

e CUDA 3.2

® Driver 260.19.12

eStella:

® 6 Nodes

¢ 2xC2050

¢ 2xQDR Infiniband interconnect(aggregate bandwidth 80GBps)
¢ Intel X5650 HexCore @ 2.67GHz

eSL 5.5

e CUDA 3.2

® Driver 260.19.26

Keeneland:

e HP SL.-390 (Ariston) cluster

¢ 120 nodes

¢ 2x Intel Westmere hex-core CPUs
® 3xC2070s

¢ QDR InfiniBand interconnect

5.5 Comparison of GPU and USER-CUDA packages

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

3. Commands

This section describes how a LAMMPS input script is formatted and the input script commands used to define
a LAMMPS simulation.

3.1 LAMMPS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 LAMMPS input script

LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input
script ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal
variable, read in a file, or run a simulation. Most commands have default settings, which means you only need
to use the command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules
apply:

(1) LAMMPS does not read your entire input script and then perform a simulation with all the settings.
Rather, the input script is read one line at a time and each command takes effect when it is read. Thus this
sequence of commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the
2nd case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep is
used for the 2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot set the
temperature of a group of atoms until atoms have been defined and a group command is used to define which
atoms belong to the group.

(3) Sometimes command B will use values that can be set by command A. This means command A must
precede command B in the input script if it is to have the desired effect. For example, the read data command
initializes the system by setting up the simulation box and assigning atoms to processors. If default values are
not desired, the processors and boundary commands need to be used before read_data to tell LAMMPS how
to map processors to the simulation box.

Many input script errors are detected by LAMMPS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions

3. Commands 14

http://lammps.sandia.gov

LIGGGHTS Users Manual

on how the command can be used.

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. LAMMPS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by LAMMPS:

(1) If the last printable character on the line is a "&" character (with no surrounding quotes), the command is
assumed to continue on the next line. The next line is concatenated to the previous line by removing the "&"
character and newline. This allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded. See an exception
in (6). Note that a comment after a trailing "&" character will prevent the command from continuing on the
next line. Also note that for multi-line commands a single leading "#" will comment out the entire command.

(3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text
string. See an exception in (6). If the $ is followed by curly brackets, then the variable name is the text inside
the curly brackets. If no curly brackets follow the $, then the variable name is the single character immediately
following the $. Thus ${myTemp} and $x refer to variable names "myTemp" and "x". See the variable
command for details of how strings are assigned to variables and how they are substituted for in input script
commands.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) If you want text with spaces to be treated as a single argument, it can be enclosed in either double or single
quotes. E.g.

print "Volume = $v"
print 'Volume Sv!

The quotes are removed when the single argument is stored internally. See the dump modify format or if
commands for examples. A "#" or "$" character that is between quotes will not be treated as a comment
indicator in (2) or substituted for as a variable in (3).

IMPORTANT NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a print

command as part of an if or run every command), then the double and single quotes can be nested in the usual
manner. See the doc pages for those commands for examples. Only one of level of nesting is allowed, but that
should be sufficient for most use cases.

3.3 Input script structure

This section describes the structure of a typical LAMMPS input script. The "examples" directory in the
LAMMPS distribution contains many sample input scripts; the corresponding problems are discussed in
Section example, and animated on the LAMMPS WWW Site.

A LAMMPS input script typically has 4 parts:

1. Initialization

3.1 LAMMPS input script 15

http://lammps.sandia.gov

LIGGGHTS Users Manual

2. Atom definition

3. Settings

4. Run a simulation
The last 2 parts can be repeated as many times as desired. L.e. run a simulation, change some settings, run
some more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands
need only be used if a non-default value is desired.
(1) Initialization

Set parameters that need to be defined before atoms are created or read-in from a file.

The relevant commands are units, dimension, newton, processors, boundary, atom_style, atom modify.

If force-field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of
force fields are being used: pair_style, bond style, angle style, dihedral style, improper_style.

(2) Atom definition

There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the read data or
read restart commands. These files can contain molecular topology information. Or create atoms on a lattice
(with no molecular topology), using these commands: lattice, region, create box, create atoms. The entire set
of atoms can be duplicated to make a larger simulation using the replicate command.

(3) Settings

Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficients,
simulation parameters, output options, etc.

Force field coefficients are set by these commands (they can also be set in the read-in files): pair_coeff,
bond coeff, angle coeff, dihedral coeff, improper coeff, kspace style, dielectric, special bonds.

Various simulation parameters are set by these commands: neighbor, neigh modify, group, timestep,
reset timestep, run_style, min_style, min _modify.

Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The fix command
comes in many flavors.

Various computations can be specified for execution during a simulation using the compute, compute modify,
and yariable commands.

Output options are set by the thermo, dump, and restart commands.
(4) Run a simulation
A molecular dynamics simulation is run using the run command. Energy minimization (molecular statics) is

performed using the minimize command. A parallel tempering (replica-exchange) simulation can be run using
the temper command.

3.4 Commands listed by category

This section lists all LAMMPS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some style options for some commands are part of specific LAMMPS packages,

3.3 Input script structure 16

LIGGGHTS Users Manual

which means they cannot be used unless the package was included when LAMMPS was built. Not all
packages are included in a default LAMMPS build. These dependencies are listed as Restrictions in the
command's documentation.

Initialization:

atom modify, atom_style, boundary, dimension, newton, processors, units

Atom definition:
create atoms, create box, lattice, read data, read restart, region, replicate

Force fields:

angle coeff, angle style, bond coeff, bond style, dielectric, dihedral coeff, dihedral style, improper coeff,
improper_style, kspace modify, kspace style, pair_coeff, pair modify, pair_style, pair_write, special bonds

Settings:

communicate, group, mass, min_modify, min_style, neigh modify, neighbor, reset timestep, run_style, set,
timestep, velocity

Fixes:

fix, fix_modify, unfix

Computes:

compute, compute modify, uncompute

Output:

dump, dump image, dump modify, restart, thermo, thermo modify, thermo style, undump, write restart
Actions:

delete atoms, delete bonds, displace atoms, change box, minimize, neb prd, run, temper

Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all LAMMPS and LIGGGHTS commands alphabetically, with a separate listing below of
styles within certain commands. Note that some style options for some commands are part of specific
LAMMPS packages, which means they cannot be used unless the package was included when LAMMPS was
built. Not all packages are included in a default LAMMPS build. These dependencies are listed as Restrictions
in the command's documentation.

angle coeff angle style atom_modify | atom style bond coeff bond style

boundary change box clear communicate compute compute modify
create_atoms | create box delete _atoms |delete bonds dielectric dihedral coeff

3.4 Commands listed by category 17

LIGGGHTS Users Manual

dihedral style| dimension |displace atoms dump dump modify echo
fix fix_modify rou if improper_coeff| improper_style
include jump kspace modify | kspace style label lattice
log mass min_modify | min_style minimize neb
neigh modify neighbor newton next orient origin
ackage pair_coeff pair_modify | pair_style pair_write partition
prd print DProcessors quit read data read restart
region replicate reset _timestep restart run run_style
set shell special bonds suffix tad temper
thermo thermo _modify| thermo style timestep uncompute undump
unfix units variable velocity write restart

angle_style potentials

See the angle style command for an overview of angle potentials. Click on the style itself for a full
description:

charmm class2 cosine cosine/delta
cosine/periodic |cosine/shift |cosine/shift/exp [cosine/squared
dipole harmonic hybrid none
sdk table

These are accelerated angle styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

charmm/omp class?2/omp cosine/delta/omp cosine/omp
cosine/periodic/omp |cosine/shift/exp/omp | cosine/shift/omp |cosine/squared/omp
dipole/omp harmonic/omp table/omp

bond_style potentials

See the bond style command for an overview of bond potentials. Click on the style itself for a full
description:

class? fene fene/expand |harmonic

harmonic/shift|harmonic/shift/cut| hybrid morse

none nonlinear uartic table
These are accelerated bond styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

class2/omp fene/expand/omp | fene/omp |harmonic/omp
harmonic/shift/cut/omp |harmonic/shift/omp [morse/omp |nonlinear/omp
quartic/omp table/omp

compute syles

See the compute command for one-line descriptions of each style or click on the style itself for a full
description:

ackland/atom angle/local |atom/molecule bond/local

3.5 Individual commands

LIGGGHTS Users Manual

centro/atom cluster/atom cna/atom com
com/molecule | contact/atom | coord/atom damage/atom
dihedral/local | displace/atom |erotate/asphere erotate/sphere
event/displace group/group gyration gyration/molecule
heat/flux improper/local ke ke/atom
ke/atom/eff ke/eff meso_e/atom meso_rho/atom
meso_t/atom msd msd/molecule |nparticles/tracer/region
pair pair/gran/local | pair/local pe
pe/atom pressure property/atom property/local
property/molecule rdf rdf/gran reduce
reduce/region slice stress/atom temp
temp/asphere temp/com temp/deform temp/deform/eff
temp/eff temp/partial | temp/profile temp/ramp
temp/region |temp/region/eff| temp/rotate temp/sphere
t wall/gran/local

These are accelerated compute styles, which can be used if LAMMPS is built with the appropriate accelerated

package.

|pe/cuda|pressure/cuda temp/cuda |temp/partial/cuda

dihedral_style potentials

See the dihedral style command for an overview of dihedral potentials. Click on the style itself for a full

description:
charmm | class? |cosine/shift/exp |harmonic
helix |hybrid|multi/harmonic| none

These are accelerated dihedral styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

charmm/omp class2/omp cosine/shift/exp/omp [harmonic/omp
helix/omp |multi/harmonic/omp opls/omp table/omp

dump syles
Click on the style itself for a full description:

image
These are accelerated styles, which can be used if LAMMPS is built with the appropriate accelerated package.

fix syles

See the fix command for one-line descriptions of each style or click on the style itself for a full description:

adapt addforce addtorque append/atoms
atc ave/atom ave/correlate ave/euler
ave/histo ave/spatial ave/time aveforce
compute syles 19

LIGGGHTS Use

rs Manual

bond/break bond/create bond/swap box/relax
check/timestep/gran deform deposit drag
dt/reset efield enforce2d evaporate
external freeze cmc gravity
heat heat/gran heat/gran/conduction imd
indent insert/pack insert/rate/region insert/stream
langevin langevin/eff lineforce massflow/mesh
mesh/surface mesh/surface/planar mesh/surface/stress mesh/surface/stress/servo
meso meso/stationary momentum move
move/mesh msst neb nph
nph/asphere nph/eff nph/sphere nphug
npt npt/asphere npt/eff npt/sphere
nve nve/asphere nve/asphere/noforce nve/eff
nve/limit nve/line nve/noforce nve/sphere
nve/tri nvt nvt/asphere nvt/eff
nvt/sllod nvt/sllod/eff nvt/sphere orient/fcc
particledistribution/discrete particletemplate/sphere planeforce pour/legacy
press/berendsen print property/atom property/atom/tracer
property/atom/tracer/stream property/global geg/comb geg/reax
reax/bonds reax/c/bonds recenter restrain
rigid rigid/nve rigid/nvt setforce
shake smd sph/density/continuity sph/density/corr
sph/density/summation sph/pressure spring spring/rg
spring/self srd store/force store/state
temp/berendsen temp/rescale temp/rescale/eff thermal/conductivity
tmd ttm viscosity viscous
wall/colloid wall/gran/hertz/history wall/gran/hertz/history/stiffness wall/gran/hooke
wall/gran/hooke/history |wall/gran/hooke/history/stiffness wall/harmonic wall/[j126
wall/1j93 wall/piston wall/reflect wall/region

wall/srd

package.

wall/region/sph
These are accelerated fix styles, which can be used if LAMMPS is built with the appropriate accelerated

addforce/cuda aveforce/cuda enforce2d/cuda freeze/cuda
gravity/cuda gravity/omp npt/cuda nve/cuda
nve/sphere/omp nvt/cuda geg/comb/omp setforce/cuda
shake/cuda [temp/berendsen/cuda |temp/rescale/cuda |temp/rescale/limit/cuda
viscous/cuda

improper_style potentials

See the improper_style command for an overview of improper potentials. Click on the style itself for a full

description:

fix syles

class2| cvff

harmonic |hybr' d |

none (umbrella

20

LIGGGHTS Users Manual

These are accelerated improper styles, which can be used if LAMMPS is built with the appropriate
accelerated package.

class2/omp | cvif/omp |harmonic/omp umbrella/omp

pair_style potentials

See the pair_style command for an overview of pair potentials. Click on the style itself for a full description:

adp airebo awpmd/cut beck
born born/coul/long born/coul/wolf brownian
brownian/poly buck buck/coul buck/coul/cut
buck/coul/long colloid comb coul/cut
coul/debye coul/diel coul/long coul/wolf
dipole/cut dipole/sf dpd dpd/tstat
dsmc eam eam/alloy eam/cd
eam/fs edip eff/cut eim
gauss gauss/cut gayberne gran/hertz/history
gran/hertz/history/stiffness gran/hooke gran/hooke/history gran/hooke/history/stiffness
hbond/dreiding/l] hbond/dreiding/morse hybrid hybrid/overlay
kim line/lj lj/charmm/coul/charmm |lj/charmm/coul/charmm/implicit
lj/charmm/coul/long lj/class2 lj/class2/coul/cut lj/class2/coul/long
lj/coul lj/cubic lj/cut lj/cut/coul/cut
lj/cut/coul/debye lj/cut/coul/long lj/cut/coul/long/tip4p lj/expand
1j/gromacs lj/gromacs/coul/gromacs 1i/sdk 1j/sdk/coul/long
/st li/smooth lj/smooth/linear 1j96/cut
lubricate lubricate/poly lubricateU lubricateU/poly
meam morse none peri/lps
peri/pmb reax reax/c rebo
resquared soft sph sph/artVisc/tensCorr
sph/heatconduction sph/idealgas sph/lj sph/rhosum
sph/taitwater sph/taitwater/morris SW table
tersoff tersoff/table tersoff/zbl i/lj
yukawa yukawa/colloid
These are accelerated pair styles, which can be used if LAMMPS is built with the appropriate accelerated
package.
adp/omp airebo/omp beck/omp born/coul/long/cuda
born/coul/long/omp born/coul/wolf/omp born/omp brownian/omp
brownian/poly/omp buck/coul/cut/cuda buck/coul/cut/gpu buck/coul/cut/omp
buck/coul/long/cuda buck/coul/long/gpu buck/coul/long/omp buck/coul/omp
buck/cuda buck/gpu buck/omp colloid/omp
comb/omp coul/cut/omp coul/debye/omp coul/long/gpu
coul/long/omp coul/wolf/omp dipole/cut/omp dipole/sf/omp
dpd/omp dpd/tstat/omp eam/alloy/cuda eam/alloy/gpu
eam/alloy/omp eam/alloy/opt eam/cd/omp eam/cuda
eam/fs/cuda eam/fs/gpu eam/fs/omp eam/fs/opt

improper_style potentials 21

LIGGGHTS Users Manual
eam/gpu eam/om eam/opt eim/om;
gauss/cut/omp gauss/omp gayberne/gpu gayberne/omp
hbond/dreiding/lj/omp hbond/dreiding/morse/omp hybrid/omp
line/lj/omp lj/charmm/coul/charmm/cuda
lj/charmm/coul/charmm/omp

lj/charmm/coul/long/opt

lj/charmm/coul/long/cuda

lj/charmm/coul/charmm/implicit/cuda

hybrid/overlay/omp

lj/charmm/coul/charmm/implici

lj/class?2/coul/long/cuda

lj/charmm/coul/pppm/omp

lj/charmm/coul/long/gpu

lj/class2/coul/cut/cuda

lj/charmm/coul/long/omp

lj/class2/cuda

lj/class2/coul/long/gpu

lj/cubic/omp

lj/class2/gpu

lj/class2/coul/long/omp

lj/class2/omp

lj/class2/coul/cut/omp

lj/class2/coul/pppm/omp

lj/cut/coul/debye/cuda

lj/cut/coul/cut/cuda

lj/cut/coul/cut/gpu

lj/coul/om

lj/cut/coul/long/omp

li/cut/coul/debyve/om:

lj/cut/cuda

lj/cut/coul/long/opt

lj/cut/coul/long/cuda

lj/cut/coul/cut/omp

li/cut/coul/lon

lj/cut/opt

lj/cut/experimental/cuda

lj/cut/coul/long/tip4p/omp

li/cut/gpu

u
lj/cut/coul/long/tip4p/opt

li/gromacs/coul/gromacs/cuda

li/expand/cuda

li/expand/gpu

li/cut/omp

li/sdk/coul/long/gpu

lj/gromacs/coul/gromacs/omp

lji/sf/omp

li/sdk/coul/long/omp

lj/eromacs/cuda

li/expand/om:

lj/gromacs/omp
li/sdk/gpu li/sdk/omp
lj/smooth/cuda li/smooth/linear/omp li/smooth/omp
1j96/cut/cuda 1j96/cut/gpu 1j96/cut/omp lubricate/omp
lubricate/poly/omp morse/cuda morse/gpu morse/omp
morse/opt peri/lps/omp peri/pmb/omp rebo/omp
resquared/gpu resquared/omp soft/omp sw/cuda
sw/omp table/gpu table/omp tersoff/table/omp
tersoff/zbl/omp tri/lj/omp yukawa/colloid/omp yukawa/gpu
yukawa/omp

pair_style potentials

22

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

12. Errors

This section describes the errors you can encounter when using LAMMPS, either conceptually, or as printed
out by the program.

12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages

12.1 Common problems

If two LAMMPS runs do not produce the same answer on different machines or different numbers of
processors, this is typically not a bug. In theory you should get identical answers on any number of processors
and on any machine. In practice, numerical round-off can cause slight differences and eventual divergence of
molecular dynamics phase space trajectories within a few 100s or few 1000s of timesteps. However, the
statistical properties of the two runs (e.g. average energy or temperature) should still be the same.

If the velocity command is used to set initial atom velocities, a particular atom can be assigned a different
velocity when the problem is run on a different number of processors or on different machines. If this
happens, the phase space trajectories of the two simulations will rapidly diverge. See the discussion of the
loop option in the yelocity command for details and options that avoid this issue.

Similarly, the create atoms command generates a lattice of atoms. For the same physical system, the ordering
and numbering of atoms by atom ID may be different depending on the number of processors.

Some commands use random number generators which may be setup to produce different random number
streams on each processor and hence will produce different effects when run on different numbers of
processors. A commonly-used example is the fix langevin command for thermostatting.

A LAMMPS simulation typically has two stages, setup and run. Most LAMMPS errors are detected at setup
time; others like a bond stretching too far may not occur until the middle of a run.

LAMMPS tries to flag errors and print informative error messages so you can fix the problem. Of course,
LAMMPS cannot figure out your physics or numerical mistakes, like choosing too big a timestep, specifying
erroneous force field coefficients, or putting 2 atoms on top of each other! If you run into errors that
LAMMPS doesn't catch that you think it should flag, please send an email to the developers.

If you get an error message about an invalid command in your input script, you can determine what command
is causing the problem by looking in the log.lammps file or using the echo command to see it on the screen.
For a given command, LAMMPS expects certain arguments in a specified order. If you mess this up,
LAMMPS will often flag the error, but it may read a bogus argument and assign a value that is valid, but not
what you wanted. E.g. trying to read the string "abc" as an integer value and assigning the associated variable
a value of 0.

Generally, LAMMPS will print a message to the screen and logfile and exit gracefully when it encounters a
fatal error. Sometimes it will print a WARNING to the screen and logfile and continue on; you can decide if
the WARNING is important or not. A WARNING message that is generated in the middle of a run is only
printed to the screen, not to the logfile, to avoid cluttering up thermodynamic output. If LAMMPS crashes or
hangs without spitting out an error message first then it could be a bug (see this section) or one of the
following cases:

12. Errors 23

http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

LIGGGHTS Users Manual

LAMMPS runs in the available memory a processor allows to be allocated. Most reasonable MD runs are
compute limited, not memory limited, so this shouldn't be a bottleneck on most platforms. Almost all large
memory allocations in the code are done via C-style malloc's which will generate an error message if you run
out of memory. Smaller chunks of memory are allocated via C++ "new" statements. If you are unlucky you
could run out of memory just when one of these small requests is made, in which case the code will crash or
hang (in parallel), since LAMMPS doesn't trap on those errors.

Illegal arithmetic can cause LAMMPS to run slow or crash. This is typically due to invalid physics and
numerics that your simulation is computing. If you see wild thermodynamic values or NaN values in your
LAMMPS output, something is wrong with your simulation. If you suspect this is happening, it is a good idea
to print out thermodynamic info frequently (e.g. every timestep) via the thermo so you can monitor what is
happening. Visualizing the atom movement is also a good idea to insure your model is behaving as you
expect.

In parallel, one way LAMMPS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or
two (usually via an environment variable) to enable buffering or boost the sizes of messages that can be
buffered.

12.2 Reporting bugs
If you are confident that you have found a bug in LAMMPS, follow these steps.

Check the New features and bug fixes section of the LAMMPS WWW site to see if the bug has already been
reported or fixed or the Unfixed bug to see if a fix is pending.

Check the mailing list to see if it has been discussed before.

If not, send an email to the mailing list describing the problem with any ideas you have as to what is causing it
or where in the code the problem might be. The developers will ask for more info if needed, such as an input
script or data files.

The most useful thing you can do to help us fix the bug is to isolate the problem. Run it on the smallest
number of atoms and fewest number of processors and with the simplest input script that reproduces the bug

and try to identify what command or combination of commands is causing the problem.

As a last resort, you can send an email directly to the developers.

12.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages LAMMPS prints out and the reason
why. If the explanation here is not sufficient, the documentation for the offending command may help. Error
and warning messages also list the source file and line number where the error was generated. For example,
this message

ERROR: Illegal velocity command (velocity.cpp:78)

means that line #78 in the file src/velocity.cpp generated the error. Looking in the source code may help you
figure out what went wrong.

Note that error messages from user-contributed packages are not listed here. If such an error occurs and is not
self-explanatory, you'll need to look in the source code or contact the author of the package.

12.1 Common problems 24

http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov
http://lammps.sandia.gov/unbug.html
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/authors.html

LIGGGHTS Users Manual

Errors:

1-3 bond count is inconsistent
An inconsistency was detected when computing the number of 1-3 neighbors for each atom. This
likely means something is wrong with the bond topologies you have defined.

1-4 bond count is inconsistent
An inconsistency was detected when computing the number of 1-4 neighbors for each atom. This
likely means something is wrong with the bond topologies you have defined.

64-bit atom IDs are not yet supported
See description of this data type in src/lmptype.h.

Accelerator sharing is not currently supported on system
Multiple MPI processes cannot share the accelerator on your system. For NVIDIA GPUs, see the
nvidia-smi command to change this setting.

All angle coeffs are not set
All angle coefficients must be set in the data file or by the angle_coeff command before running a
simulation.

All bond coeffs are not set
All bond coefficients must be set in the data file or by the bond_coeff command before running a
simulation.

All dihedral coeffs are not set
All dihedral coefficients must be set in the data file or by the dihedral_coeff command before running
a simulation.

All improper coeffs are not set
All improper coefficients must be set in the data file or by the improper_coeff command before
running a simulation.

All masses are not set
For atom styles that define masses for each atom type, all masses must be set in the data file or by the
mass command before running a simulation. They must also be set before using the velocity
command.

All pair coeffs are not set
All pair coefficients must be set in the data file or by the pair_coeff command before running a
simulation.

All universe/uloop variables must have same # of values
Self-explanatory.

All variables in next command must be same style
Self-explanatory.

Angle atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular angle on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atom missing in set command
The set command cannot find one or more atoms in a particular angle on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atoms %d %d %d missing on proc %d at step %ld
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too far
away.

Angle coeff for hybrid has invalid style
Angle style hybrid uses another angle style as one of its coefficients. The angle style used in the
angle_coeff command or read from a restart file is not recognized.

Angle coeffs are not set
No angle coefficients have been assigned in the data file or via the angle_coeff command.

Angle potential must be defined for SHAKE
When shaking angles, an angle_style potential must be used.

Angle style hybrid cannot have hybrid as an argument

Errors: 25

LIGGGHTS Users Manual

Self-explanatory.
Angle style hybrid cannot have none as an argument
Self-explanatory.
Angle style hybrid cannot use same pair style twice
Self-explanatory.
Angle table must range from 0 to 180 degrees
Self-explanatory.
Angle table parameters did not set N
List of angle table parameters must include N setting.
Angle_coeff command before angle_style is defined
Coefficients cannot be set in the data file or via the angle_coeff command until an angle_style has
been assigned.
Angle_coeff command before simulation box is defined
The angle_coeff command cannot be used before a read_data, read_restart, or create_box command.
Angle_coeff command when no angles allowed
The chosen atom style does not allow for angles to be defined.
Angle_style command when no angles allowed
The chosen atom style does not allow for angles to be defined.
Angles assigned incorrectly
Angles read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Angles defined but no angle types
The data file header lists angles but no angle types.
Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.
Append boundary must be shrink/minimum
The boundary style of the face where atoms are added must be of type m (shrink/minimum).
Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.
Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.
Assigning ellipsoid parameters to non-ellipsoid atom
Self-explanatory.
Assigning line parameters to non-line atom
Self-explanatory.
Assigning tri parameters to non-tri atom
Self-explanatory.
Atom IDs must be consecutive for velocity create loop all
Self-explanatory.
Atom count changed in fix neb
This is not allowed in a NEB calculation.
Atom count is inconsistent, cannot write restart file
Sum of atoms across processors does not equal initial total count. This is probably because you have
lost some atoms.
Atom in too many rigid bodies - boost MAXBODY
Fix poems has a parameter MAXBODY (in fix_poems.cpp) which determines the maximum number
of rigid bodies a single atom can belong to (i.e. a multibody joint). The bodies you have defined
exceed this limit.
Atom sort did not operate correctly
This is an internal LAMMPS error. Please report it to the developers.
Atom sorting has bin size = 0.0
The neighbor cutoff is being used as the bin size, but it is zero. Thus you must explicitly list a bin size
in the atom_modify sort command or turn off sorting.
Atom style hybrid cannot have hybrid as an argument

Errors: 26

LIGGGHTS Users Manual

Self-explanatory.
Atom style hybrid cannot use same atom style twice
Self-explanatory.
Atom vector in equal-style variable formula
Atom vectors generate one value per atom which is not allowed in an equal-style variable.
Atom-style variable in equal-style variable formula
Atom-style variables generate one value per atom which is not allowed in an equal-style variable.
Atom_modify map command after simulation box is defined
The atom_modify map command cannot be used after a read_data, read_restart, or create_box
command.
Atom_modify sort and first options cannot be used together
Self-explanatory.
Atom_style command after simulation box is defined
The atom_style command cannot be used after a read_data, read_restart, or create_box command.
Atom_style line can only be used in 2d simulations
Self-explanatory.
Atom_style tri can only be used in 3d simulations
Self-explanatory.
Attempt to pop empty stack in fix box/relax
Internal LAMMPS error. Please report it to the developers.
Attempt to push beyond stack limit in fix box/relax
Internal LAMMPS error. Please report it to the developers.
Attempting to rescale a 0.0 temperature
Cannot rescale a temperature that is already 0.0.
Bad FENE bond
Two atoms in a FENE bond have become so far apart that the bond cannot be computed.
Bad TIP4P angle type for PPPM/TIP4P
Specified angle type is not valid.
Bad TIP4P bond type for PPPM/TIP4P
Specified bond type is not valid.
Bad fix ID in fix append/atoms command
The value of the fix_id for keyword spatial must start with the suffix f_.
Bad grid of processors
The 3d grid of processors defined by the processors command does not match the number of
processors LAMMPS is being run on.
Bad kspace_modify slab parameter
Kspace_modify value for the slab/volume keyword must be >= 2.0.
Bad matrix inversion in mldivide3
This error should not occur unless the matrix is badly formed.
Bad principal moments
Fix rigid did not compute the principal moments of inertia of a rigid group of atoms correctly.
Bad quadratic solve for particle/line collision
This is an internal error. It should nornally not occur.
Bad quadratic solve for particle/tri collision
This is an internal error. It should nornally not occur.
Balance command before simulation box is defined
The balance command cannot be used before a read_data, read_restart, or create_box command.
Balance dynamic string is invalid
The string can only contain the characters "x", "y", or "z".
Balance dynamic string is invalid for 2d simulation
The string cannot contain the letter "z".
Bias compute does not calculate a velocity bias
The specified compute must compute a bias for temperature.
Bias compute does not calculate temperature

Errors: 27

LIGGGHTS Users Manual

The specified compute must compute temperature.
Bias compute group does not match compute group
The specified compute must operate on the same group as the parent compute.
Big particle in fix srd cannot be point particle
Big particles must be extended spheriods or ellipsoids.
Bigint setting in Imptype.h is invalid
Size of bigint is less than size of tagint.
Bigint setting in Imptype.h is not compatible
Bigint stored in restart file is not consistent with LAMMPS version you are running.
Bitmapped lookup tables require int/float be same size
Cannot use pair tables on this machine, because of word sizes. Use the pair_modify command with
table O instead.
Bitmapped table in file does not match requested table
Setting for bitmapped table in pair_coeff command must match table in file exactly.
Bitmapped table is incorrect length in table file
Number of table entries is not a correct power of 2.
Bond and angle potentials must be defined for TIP4P
Cannot use TIP4P pair potential unless bond and angle potentials are defined.
Bond atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular bond on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid bond.
Bond atom missing in set command
The set command cannot find one or more atoms in a particular bond on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid bond.
Bond atoms %d %d missing on proc %d at step %ld
One or both of 2 atoms needed to compute a particular bond are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the bond has blown apart and an atom is too far
away.
Bond coeff for hybrid has invalid style
Bond style hybrid uses another bond style as one of its coefficients. The bond style used in the
bond_coeff command or read from a restart file is not recognized.
Bond coeffs are not set
No bond coefficients have been assigned in the data file or via the bond_coeff command.
Bond potential must be defined for SHAKE
Cannot use fix shake unless bond potential is defined.
Bond style hybrid cannot have hybrid as an argument
Self-explanatory.
Bond style hybrid cannot have none as an argument
Self-explanatory.
Bond style hybrid cannot use same pair style twice
Self-explanatory.
Bond style quartic cannot be used with 3,4-body interactions
No angle, dihedral, or improper styles can be defined when using bond style quartic.
Bond style quartic requires special_bonds = 1,1,1
This is a restriction of the current bond quartic implementation.
Bond table parameters did not set N
List of bond table parameters must include N setting.
Bond table values are not increasing
The values in the tabulated file must be monotonically increasing.
Bond_coeff command before bond_style is defined
Coefficients cannot be set in the data file or via the bond_coeff command until an bond_style has
been assigned.
Bond_coeff command before simulation box is defined
The bond_coeff command cannot be used before a read_data, read_restart, or create_box command.

Errors: 28

LIGGGHTS Users Manual

Bond_coeff command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.
Bond_style command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.
Bonds assigned incorrectly
Bonds read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Bonds defined but no bond types
The data file header lists bonds but no bond types.
Both sides of boundary must be periodic
Cannot specify a boundary as periodic only on the lo or hi side. Must be periodic on both sides.
Boundary command after simulation box is defined
The boundary command cannot be used after a read_data, read_restart, or create_box command.
Box bounds are invalid
The box boundaries specified in the read_data file are invalid. The lo value must be less than the hi
value for all 3 dimensions.
Can not specify Pxy/Pxz/Pyz in fix box/relax with non-triclinic box
Only triclinic boxes can be used with off-diagonal pressure components. See the region prism
command for details.
Can not specify Pxy/Pxz/Pyz in fix nvt/npt/nph with non-triclinic box
Only triclinic boxes can be used with off-diagonal pressure components. See the region prism
command for details.
Can only use -plog with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.
Can only use -pscreen with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.
Can only use NEB with 1-processor replicas
This is current restriction for NEB as implemented in LAMMPS.
Can only use TAD with I-processor replicas for NEB
This is current restriction for NEB as implemented in LAMMPS.
Cannot (yet) use PPPM with triclinic box
This feature is not yet supported.
Cannot add atoms to fix move variable
Atoms can not be added afterwards to this fix option.
Cannot append atoms to a triclinic box
The simulation box must be defined with edges alligned with the Cartesian axes.
Cannot balance in z dimension for 2d simulation
Self-explanatory.
Cannot change box ortho/triclinic with certain fixes defined
This is because those fixes store the shape of the box. You need to use unfix to discard the fix, change
the box, then redefine a new fix.
Cannot change box ortho/triclinic with dumps defined
This is because some dumps store the shape of the box. You need to use undump to discard the dump,
change the box, then redefine a new dump.
Cannot change box tilt factors for orthogonal box
Cannot use tilt factors unless the simulation box is non-orthogonal.
Cannot change box to orthogonal when tilt is non-zero
Self-explanatory.
Cannot change box z boundary to nonperiodic for a 2d simulation
Self-explanatory.
Cannot change dump_modify every for dump dcd
The frequency of writing dump dcd snapshots cannot be changed.
Cannot change dump_modify every for dump xtc
The frequency of writing dump xtc snapshots cannot be changed.

Errors: 29

LIGGGHTS Users Manual

Cannot change timestep once fix srd is setup
This is because various SRD properties depend on the timestep size.
Cannot change timestep with fix pour
This fix pre-computes some values based on the timestep, so it cannot be changed during a simulation
run.
Cannot change_box after reading restart file with per-atom info
This is because the restart file info cannot be migrated with the atoms. You can get around this by
performing a O-timestep run which will assign the restart file info to actual atoms.
Cannot change_box in xz or yz for 2d simulation
Self-explanatory.
Cannot change_box in z dimension for 2d simulation
Self-explanatory.
Cannot compute PPPM G
LAMMPS failed to compute a valid approximation for the PPPM g_ewald factor that partitions the
computation between real space and k-space.
Cannot create an atom map unless atoms have IDs
The simulation requires a mapping from global atom IDs to local atoms, but the atoms that have been
defined have no IDs.
Cannot create atoms with undefined lattice
Must use the lattice command before using the create_atoms command.
Cannot create/grow a vector/array of pointers for %s
LAMMPS code is making an illegal call to the templated memory allocaters, to create a vector or
array of pointers.
Cannot create_atoms after reading restart file with per-atom info
The per-atom info was stored to be used when by a fix that you may re-define. If you add atoms
before re-defining the fix, then there will not be a correct amount of per-atom info.
Cannot create_box after simulation box is defined
The create_box command cannot be used after a read_data, read_restart, or create_box command.
Cannot currently use pair reax with pair hybrid
This is not yet supported.
Cannot delete group all
Self-explanatory.
Cannot delete group currently used by a compute
Self-explanatory.
Cannot delete group currently used by a dump
Self-explanatory.
Cannot delete group currently used by a fix
Self-explanatory.
Cannot delete group currently used by atom_modify first
Self-explanatory.
Cannot displace_atoms after reading restart file with per-atom info
This is because the restart file info cannot be migrated with the atoms. You can get around this by
performing a O-timestep run which will assign the restart file info to actual atoms.
Cannot do GCMC on atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.
Cannot dump JPG file
LAMMPS was not built with the -DLAMMPS_JPEG switch in the Makefile.
Cannot dump sort on atom IDs with no atom IDs defined
Self-explanatory.
Cannot evaporate atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.
Cannot find delete_bonds group 1D

Errors: 30

LIGGGHTS Users Manual

Group ID used in the delete_bonds command does not exist.
Cannot have both pair_modify shift and tail set to yes
These 2 options are contradictory.
Cannot open -reorder file
Self-explanatory.
Cannot open ADP potential file %s
The specified ADP potential file cannot be opened. Check that the path and name are correct.
Cannot open AIREBO potential file %s
The specified AIREBO potential file cannot be opened. Check that the path and name are correct.
Cannot open COMB potential file %s
The specified COMB potential file cannot be opened. Check that the path and name are correct.
Cannot open EAM potential file %s
The specified EAM potential file cannot be opened. Check that the path and name are correct.
Cannot open EIM potential file %s
The specified EIM potential file cannot be opened. Check that the path and name are correct.
Cannot open MEAM potential file os
The specified MEAM potential file cannot be opened. Check that the path and name are correct.
Cannot open Stillinger-Weber potential file %s
The specified SW potential file cannot be opened. Check that the path and name are correct.
Cannot open Tersoff potential file %s
The specified Tersoff potential file cannot be opened. Check that the path and name are correct.
Cannot open balance output file
This error message can only occur if debug options are uncommented in src/balance.cpp.
Cannot open custom file
Self-explanatory.
Cannot open dir to search for restart file
Using a "*" in the name of the restart file will open the current directory to search for matching file
names.
Cannot open dump file
The output file for the dump command cannot be opened. Check that the path and name are correct.
Cannot open file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/correlate file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/histo file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/spatial file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/time file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix poems file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix print file %s
The output file generated by the fix print command cannot be opened
Cannot open fix geq/comb file %s
The output file for the fix geq/combs command cannot be opened. Check that the path and name are
correct.
Cannot open fix reax/bonds file %s
The output file for the fix reax/bonds command cannot be opened. Check that the path and name are
correct.
Cannot open fix tmd file %s
The output file for the fix tmd command cannot be opened. Check that the path and name are correct.
Cannot open fix ttm file %s
The output file for the fix ttm command cannot be opened. Check that the path and name are correct.

Errors: 31

LIGGGHTS Users Manual

Cannot open gzipped file
LAMMPS is attempting to open a gzipped version of the specified file but was unsuccessful. Check
that the path and name are correct.
Cannot open input script %s
Self-explanatory.
Cannot open log.lammps
The default LAMMPS log file cannot be opened. Check that the directory you are running in allows
for files to be created.
Cannot open logfile
The LAMMPS log file named in a command-line argument cannot be opened. Check that the path
and name are correct.
Cannot open logfile %s
The LAMMPS log file specified in the input script cannot be opened. Check that the path and name
are correct.
Cannot open pair_write file
The specified output file for pair energies and forces cannot be opened. Check that the path and name
are correct.
Cannot open processors output file
Self-explanatory.
Cannot open restart file %s
Self-explanatory.
Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you
are running in allows for files to be created.
Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are
running in allows for files to be created.
Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.
Cannot read_data after simulation box is defined
The read_data command cannot be used after a read_data, read_restart, or create_box command.
Cannot read_restart after simulation box is defined
The read_restart command cannot be used after a read_data, read_restart, or create_box command.
Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.
Cannot replicate 2d simulation in z dimension
The replicate command cannot replicate a 2d simulation in the z dimension.
Cannot replicate with fixes that store atom quantities
Either fixes are defined that create and store atom-based vectors or a restart file was read which
included atom-based vectors for fixes. The replicate command cannot duplicate that information for
new atoms. You should use the replicate command before fixes are applied to the system.
Cannot reset timestep with a dynamic region defined
Dynamic regions (see the region command) have a time dependence. Thus you cannot change the
timestep when one or more of these are defined.
Cannot reset timestep with a time-dependent fix defined
You cannot reset the timestep when a fix that keeps track of elapsed time is in place.
Cannot reset timestep with dump file already written to
Changing the timestep will confuse when a dump file is written. Use the undump command, then
restart the dump file.
Cannot reset timestep with restart file already written
Changing the timestep will confuse when a restart file is written. Use the "restart 0" command to turn
off restarts, then start them again.
Cannot restart fix rigid/nvt with different # of chains

Errors: 32

LIGGGHTS Users Manual

This is because the restart file contains per-chain info.
Cannot run 2d simulation with nonperiodic Z dimension
Use the boundary command to make the z dimension periodic in order to run a 2d simulation.
Cannot set both respa pair and inner/middle/outer
In the rRESPA integrator, you must compute pairwise potentials either all together (pair), or in pieces
(inner/middle/outer). You can't do both.
Cannot set dump_modify flush for dump xtc
Self-explanatory.
Cannot set mass for this atom style
This atom style does not support mass settings for each atom type. Instead they are defined on a
per-atom basis in the data file.
Cannot set meso_rho for this atom style
Self-explanatory.
Cannot set non-zero image flag for non-periodic dimension
Self-explanatory.
Cannot set non-zero z velocity for 2d simulation
Self-explanatory.
Cannot set quaternion for atom that has none
Self-explanatory.
Cannot set respa middle without inner/outer
In the rRESPA integrator, you must define both a inner and outer setting in order to use a middle
setting.
Cannot set theta for atom that is not a line
Self-explanatory.
Cannot set this attribute for this atom style
The attribute being set does not exist for the defined atom style.
Cannot set variable 7 velocity for 2d simulation
Self-explanatory.
Cannot skew triclinic box in z for 2d simulation
Self-explanatory.
Cannot use -cuda on without USER-CUDA installed
The USER-CUDA package must be installed via "make yes-user-cuda" before LAMMPS is built.
Cannot use -reorder after -partition
Self-explanatory. See doc page discussion of command-line switches.
Cannot use Ewald with 2d simulation
The kspace style ewald cannot be used in 2d simulations. You can use 2d Ewald in a 3d simulation;
see the kspace_modify command.
Cannot use Ewald with triclinic box
This feature is not yet supported.
Cannot use NEB unless atom map exists
Use the atom_modify command to create an atom map.
Cannot use NEB with a single replica
Self-explanatory.
Cannot use NEB with atom_modify sort enabled
This is current restriction for NEB implemented in LAMMPS.
Cannot use PPPM with 2d simulation
The kspace style pppm cannot be used in 2d simulations. You can use 2d PPPM in a 3d simulation;
see the kspace_modify command.
Cannot use PRD with a time-dependent fix defined
PRD alters the timestep in ways that will mess up these fixes.
Cannot use PRD with a time-dependent region defined
PRD alters the timestep in ways that will mess up these regions.
Cannot use PRD with atom_modify sort enabled
This is a current restriction of PRD. You must turn off sorting, which is enabled by default, via the

Errors: 33

LIGGGHTS Users Manual

atom_modify command.
Cannot use PRD with multi-processor replicas unless atom map exists
Use the atom_modify command to create an atom map.
Cannot use TAD unless atom map exists for NEB
See atom_modify map command to set this.
Cannot use TAD with a single replica for NEB
NEB requires multiple replicas.
Cannot use TAD with atom_modify sort enabled for NEB
This is a current restriction of NEB.
Cannot use a damped dynamics min style with fix box/relax
This is a current restriction in LAMMPS. Use another minimizer style.
Cannot use a damped dynamics min style with per-atom DOF
This is a current restriction in LAMMPS. Use another minimizer style.
Cannot use append/atoms in periodic dimension
The boundary style of the face where atoms are added can not be of type p (periodic).
Cannot use compute cluster/atom unless atoms have IDs
Atom IDs are used to identify clusters.
Cannot use cwiggle in variable formula between runs
This is a function of elapsed time.
Cannot use delete_atoms unless atoms have IDs
Your atoms do not have IDs, so the delete_atoms command cannot be used.
Cannot use delete_bonds with non-molecular system
Your choice of atom style does not have bonds.
Cannot use fix GPU with USER-CUDA mode enabled
You cannot use both the GPU and USER-CUDA packages together. Use one or the other.
Cannot use fix TMD unless atom map exists
Using this fix requires the ability to lookup an atom index, which is provided by an atom map. An
atom map does not exist (by default) for non-molecular problems. Using the atom_modify map
command will force an atom map to be created.
Cannot use fix ave/spatial z for 2 dimensional model
Self-explanatory.
Cannot use fix bond/break with non-molecular systems
Self-explanatory.
Cannot use fix bond/create with non-molecular systems
Self-explanatory.
Cannot use fix box/relax on a 2nd non-periodic dimension
When specifying an off-diagonal pressure component, the 2nd of the two dimensions must be
periodic. E.g. if the Xy component is specified, then the y dimension must be periodic.
Cannot use fix box/relax on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix deform on a shrink-wrapped boundary
The x, y, z options cannot be applied to shrink-wrapped dimensions.
Cannot use fix deform tilt on a shrink-wrapped 2nd dim
This is because the shrink-wrapping will change the value of the strain implied by the tilt factor.
Cannot use fix deform trate on a box with zero tilt
The trate style alters the current strain.
Cannot use fix enforce2d with 3d simulation
Self-explanatory.
Cannot use fix msst without per-type mass defined
Self-explanatory.
Cannot use fix npt and fix deform on same component of stress tensor
This would be changing the same box dimension twice.
Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension
When specifying an off-diagonal pressure component, the 2nd of the two dimensions must be

Errors: 34

LIGGGHTS Users Manual

periodic. E.g. if the Xy component is specified, then the y dimension must be periodic.

Cannot use fix nvt/npt/nph on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix nvt/npt/nph with both xy dynamics and xy scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with both xz dynamics and xz scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with both yz dynamics and yz scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with xy dynamics when y is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix nvt/npt/nph with xz dynamics when z is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix nvt/npt/nph with yz dynamics when z is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix pour with triclinic box
This feature is not yet supported.
Cannot use fix press/berendsen and fix deform on same component of stress tensor
These commands both change the box size/shape, so you cannot use both together.
Cannot use fix press/berendsen on a non-periodic dimension
Self-explanatory.
Cannot use fix press/berendsen with triclinic box
Self-explanatory.
Cannot use fix reax/bonds without pair_style reax
Self-explantory.
Cannot use fix shake with non-molecular system
Your choice of atom style does not have bonds.
Cannot use fix ttm with 2d simulation
This is a current restriction of this fix due to the grid it creates.
Cannot use fix ttm with triclinic box
This is a current restriction of this fix due to the grid it creates.
Cannot use fix wall in periodic dimension
Self-explanatory.
Cannot use fix wall zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use fix wall/reflect in periodic dimension
Self-explanatory.
Cannot use fix wall/reflect zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use fix wall/srd in periodic dimension
Self-explanatory.
Cannot use fix wall/srd more than once
Nor is their a need to since multiple walls can be specified in one command.
Cannot use fix wall/srd without fix srd
Self-explanatory.
Cannot use fix wall/srd zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use force/hybrid_neigh with triclinic box
Self-explanatory.
Cannot use force/neigh with triclinic box
This is a current limitation of the GPU implementation in LAMMPS.
Cannot use kspace solver on system with no charge
No atoms in system have a non-zero charge.
Cannot use lines with fix srd unless overlap is set

Errors:

35

LIGGGHTS Users Manual

This is because line segements are connected to each other.
Cannot use neigh_modify exclude with GPU neighbor builds

This is a current limitation of the GPU implementation in LAMMPS.
Cannot use neighbor bins - box size << cutoff

Too many neighbor bins will be created. This typically happens when the simulation box is very small

in some dimension, compared to the neighbor cutoff. Use the "nsq" style instead of "bin" style.

Cannot use newton pair with buck/coul/cut/gpu pair style
Self-explanatory.
Cannot use newton pair with buck/coul/long/gpu pair style
Self-explanatory.
Cannot use newton pair with buck/gpu pair style
Self-explanatory.
Cannot use newton pair with coul/long/gpu pair style
Self-explanatory.
Cannot use newton pair with eam/gpu pair style
Self-explanatory.
Cannot use newton pair with gayberne/gpu pair style
Self-explanatory.
Cannot use newton pair with lj/charmm/coul/long/gpu pair style
Self-explanatory.
Cannot use newton pair with lj/class2/coul/long/gpu pair style
Self-explanatory.
Cannot use newton pair with lj/class2/gpu pair style
Self-explanatory.
Cannot use newton pair with lj/cut/coul/cut/gpu pair style
Self-explanatory.
Cannot use newton pair with lj/cut/coul/long/gpu pair style
Self-explanatory.
Cannot use newton pair with lj/cut/gpu pair style
Self-explanatory.
Cannot use newton pair with lj/expand/gpu pair style
Self-explanatory.
Cannot use newton pair with [j96/cut/gpu pair style
Self-explanatory.
Cannot use newton pair with morse/gpu pair style
Self-explanatory.
Cannot use newton pair with resquared/gpu pair style
Self-explanatory.
Cannot use newton pair with table/gpu pair style
Self-explanatory.
Cannot use newton pair with yukawa/gpu pair style
Self-explanatory.
Cannot use non-zero forces in an energy minimization
Fix setforce cannot be used in this manner. Use fix addforce instead.
Cannot use nonperiodic boundares with fix ttm
This fix requires a fully periodic simulation box.
Cannot use nonperiodic boundaries with Ewald
For kspace style ewald, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.
Cannot use nonperiodic boundaries with PPPM
For kspace style pppm, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.
Cannot use order greater than 8 with pppm/gpu.
Self-explanatory.

Errors:

36

LIGGGHTS Users Manual

Cannot use pair hybrid with GPU neighbor builds
See documentation for fix gpu.
Cannot use pair tail corrections with 2d simulations
The correction factors are only currently defined for 3d systems.
Cannot use processors part command without using partitions
See the command-line -partition switch.
Cannot use ramp in variable formula between runs
This is because the ramp() function is time dependent.
Cannot use region INF or EDGE when box does not exist

Regions that extend to the box boundaries can only be used after the create_box command has been

used.
Cannot use set atom with no atom IDs defined
Atom IDs are not defined, so they cannot be used to identify an atom.
Cannot use set mol with no molecule IDs defined
Self-explanatory.
Cannot use swiggle in variable formula between runs
This is a function of elapsed time.
Cannot use tris with fix srd unless overlap is set
This is because triangles are connected to each other.
Cannot use variable energy with constant force in fix addforce
This is because for constant force, LAMMPS can compute the change in energy directly.
Cannot use variable every setting for dump dcd
The format of DCD dump files requires snapshots be output at a constant frequency.
Cannot use variable every setting for dump xtc
The format of this file requires snapshots at regular intervals.
Cannot use vdisplace in variable formula between runs
This is a function of elapsed time.
Cannot use velocity create loop all unless atoms have IDs

Atoms in the simulation to do not have IDs, so this style of velocity creation cannot be performed.

Cannot use wall in periodic dimension

Self-explanatory.
Cannot wiggle and shear fix wall/gran

Cannot specify both options at the same time.
Cannot zero Langevin force of 0 atoms

The group has zero atoms, so you cannot request its force be zeroed.
Cannot zero momentum of 0 atoms

The collection of atoms for which momentum is being computed has no atoms.
Change_box command before simulation box is defined

Self-explanatory.
Change_box volume used incorrectly

The "dim volume" option must be used immediately following one or two settings for "dim1 ..." (and

optionally "dim2 ...") and must be for a different dimension, i.e. dim !=dim1 and dim != dim?2.

Communicate group != atom_modify first group
Self-explanatory.

Compute ID for compute atom/molecule does not exist
Self-explanatory.

Compute ID for compute reduce does not exist
Self-explanatory.

Compute ID for compute slice does not exist
Self-explanatory.

Compute ID for fix ave/atom does not exist
Self-explanatory.

Compute ID for fix ave/correlate does not exist
Self-explanatory.

Errors:

37

LIGGGHTS Users Manual

Compute ID for fix ave/histo does not exist
Self-explanatory.

Compute ID for fix ave/spatial does not exist
Self-explanatory.

Compute ID for fix ave/time does not exist
Self-explanatory.

Compute ID for fix store/state does not exist
Self-explanatory.

Compute ID must be alphanumeric or underscore characters
Self-explanatory.

Compute angle/local used when angles are not allowed
The atom style does not support angles.

Compute atom/molecule compute array is accessed out-of-range
Self-explanatory.

Compute atom/molecule compute does not calculate a per-atom array
Self-explanatory.

Compute atom/molecule compute does not calculate a per-atom vector
Self-explanatory.

Compute atom/molecule compute does not calculate per-atom values
Self-explanatory.

Compute atom/molecule fix array is accessed out-of-range
Self-explanatory.

Compute atom/molecule fix does not calculate a per-atom array
Self-explanatory.

Compute atom/molecule fix does not calculate a per-atom vector
Self-explanatory.

Compute atom/molecule fix does not calculate per-atom values
Self-explanatory.

Compute atom/molecule requires molecular atom style
Self-explanatory.

Compute atom/molecule variable is not atom-style variable
Self-explanatory.

Compute bond/local used when bonds are not allowed
The atom style does not support bonds.

Compute centro/atom requires a pair style be defined
This is because the computation of the centro-symmetry values uses a pairwise neighbor list.

Compute cluster/atom cutoff is longer than pairwise cutoff
Cannot identify clusters beyond cutoff.

Compute cluster/atom requires a pair style be defined
This is so that the pair style defines a cutoff distance which is used to find clusters.

Compute cna/atom cutoff is longer than pairwise cutoff
Self-explantory.

Compute cna/atom requires a pair style be defined
Self-explantory.

Compute com/molecule requires molecular atom style
Self-explanatory.

Compute coord/atom cutoff is longer than pairwise cutoff
Cannot compute coordination at distances longer than the pair cutoff, since those atoms are not in the
neighbor list.

Compute coord/atom requires a pair style be defined
Self-explantory.

Compute damage/atom requires peridynamic potential
Damage is a Peridynamic-specific metric. It requires you to be running a Peridynamics simulation.

Compute dihedral/local used when dihedrals are not allowed

Errors: 38

LIGGGHTS Users Manual

The atom style does not support dihedrals.
Compute does not allow an extra compute or fix to be reset
This is an internal LAMMPS error. Please report it to the developers.
Compute erotate/asphere requires atom style ellipsoid or line or tri
Self-explanatory.
Compute erotate/asphere requires extended particles
This compute cannot be used with point paritlces.
Compute erotate/sphere requires atom style sphere
Self-explanatory.
Compute event/displace has invalid fix event assigned
This is an internal LAMMPS error. Please report it to the developers.
Compute group/group group ID does not exist
Self-explanatory.
Compute gyration/molecule requires molecular atom style
Self-explanatory.
Compute heat/flux compute ID does not compute ke/atom
Self-explanatory.
Compute heat/flux compute ID does not compute pe/atom
Self-explanatory.
Compute heat/flux compute ID does not compute stress/atom
Self-explanatory.
Compute improper/local used when impropers are not allowed
The atom style does not support impropers.
Compute msd/molecule requires molecular atom style
Self-explanatory.
Compute nve/asphere requires atom style ellipsoid
Self-explanatory.
Compute nvt/nph/npt asphere requires atom style ellipsoid
Self-explanatory.
Compute pair must use group all
Pair styles accumlate energy on all atoms.
Compute pe must use group all
Energies computed by potentials (pair, bond, etc) are computed on all atoms.
Compute pressure must use group all
Virial contributions computed by potentials (pair, bond, etc) are computed on all atoms.
Compute pressure temperature ID does not compute temperature
The compute ID assigned to a pressure computation must compute temperature.
Compute property/atom for atom property that isn't allocated
Self-explanatory.
Compute property/local cannot use these inputs together
Only inputs that generate the same number of datums can be used togther. E.g. bond and angle
quantities cannot be mixed.
Compute property/local for property that isn't allocated
Self-explanatory.
Compute property/molecule requires molecular atom style
Self-explanatory.
Compute rdf requires a pair style be defined
Self-explanatory.
Compute reduce compute array is accessed out-of-range
An index for the array is out of bounds.
Compute reduce compute calculates global values
A compute that calculates peratom or local values is required.
Compute reduce compute does not calculate a local array
Self-explanatory.

Errors: 39

LIGGGHTS Users Manual

Compute reduce compute does not calculate a local vector
Self-explanatory.

Compute reduce compute does not calculate a per-atom array
Self-explanatory.

Compute reduce compute does not calculate a per-atom vector
Self-explanatory.

Compute reduce fix array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce fix calculates global values
A fix that calculates peratom or local values is required.

Compute reduce fix does not calculate a local array
Self-explanatory.

Compute reduce fix does not calculate a local vector
Self-explanatory.

Compute reduce fix does not calculate a per-atom array
Self-explanatory.

Compute reduce fix does not calculate a per-atom vector
Self-explanatory.

Compute reduce replace requires min or max mode
Self-explanatory.

Compute reduce variable is not atom-style variable
Self-explanatory.

Compute slice compute array is accessed out-of-range
An index for the array is out of bounds.

Compute slice compute does not calculate a global array
Self-explanatory.

Compute slice compute does not calculate a global vector
Self-explanatory.

Compute slice compute does not calculate global vector or array
Self-explanatory.

Compute slice compute vector is accessed out-of-range
The index for the vector is out of bounds.

Compute slice fix array is accessed out-of-range
An index for the array is out of bounds.

Compute slice fix does not calculate a global array
Self-explanatory.

Compute slice fix does not calculate a global vector
Self-explanatory.

Compute slice fix does not calculate global vector or array
Self-explanatory.

Compute slice fix vector is accessed out-of-range
The index for the vector is out of bounds.

Compute temp/asphere requires atom style ellipsoid
Self-explanatory.

Compute temp/asphere requires extended particles
This compute cannot be used with point paritlces.

Compute temp/partial cannot use vz for 2d systemx
Self-explanatory.

Compute temp/profile cannot bin 7 for 2d systems
Self-explanatory.

Compute temp/profile cannot use vz for 2d systemx
Self-explanatory.

Compute temp/sphere requires atom style sphere
Self-explanatory.

Errors:

40

LIGGGHTS Users Manual

Compute ti kspace style does not exist
Self-explanatory.
Compute ti pair style does not exist
Self-explanatory.
Compute ti tail when pair style does not compute tail corrections
Self-explanatory.
Compute used in variable between runs is not current
Computes cannot be invoked by a variable in between runs. Thus they must have been evaluated on
the last timestep of the previous run in order for their value(s) to be accessed. See the doc page for the
variable command for more info.
Compute used in variable thermo keyword between runs is not current
Some thermo keywords rely on a compute to calculate their value(s). Computes cannot be invoked by
a variable in between runs. Thus they must have been evaluated on the last timestep of the previous
run in order for their value(s) to be accessed. See the doc page for the variable command for more
info.
Computed temperature for fix temp/berendsen cannot be 0.0
Self-explanatory.
Computed temperature for fix temp/rescale cannot be 0.0
Cannot rescale the temperature to a new value if the current temperature is 0.0.
Could not count initial bonds in fix bond/create
Could not find one of the atoms in a bond on this processor.
Could not create 3d FFT plan
The FFT setup in pppm failed.
Could not create 3d grid of processors
The specified constraints did not allow a Px by Py by Pz grid to be created where Px * Py * Pz=P =
total number of processors.
Could not create 3d remap plan
The FFT setup in pppm failed.
Could not create numa grid of processors
The specified constraints did not allow this style of grid to be created. Usually this is because the total
processor count is not a multiple of the cores/node or the user specified processor count is > 1 in one
of the dimensions.
Could not create twolevel 3d grid of processors
The specified constraints did not allow this style of grid to be created.
Could not find atom_modify first group ID
Self-explanatory.
Could not find change_box group ID
Group ID used in the change_box command does not exist.
Could not find compute ID for PRD
Self-explanatory.
Could not find compute ID for TAD
Self-explanatory.
Could not find compute ID for temperature bias
Self-explanatory.
Could not find compute ID to delete
Self-explanatory.
Could not find compute displace/atom fix ID
Self-explanatory.
Could not find compute event/displace fix ID
Self-explanatory.
Could not find compute group ID
Self-explanatory.
Could not find compute heat/flux compute ID
Self-explanatory.

Errors: 41

LIGGGHTS Users Manual

Could not find compute msd fix ID

Self-explanatory.
Could not find compute pressure temperature 1D

The compute ID for calculating temperature does not exist.
Could not find compute_modify ID

Self-explanatory.
Could not find delete_atoms group ID

Group ID used in the delete_atoms command does not exist.
Could not find delete_atoms region 1D

Region ID used in the delete_atoms command does not exist.
Could not find displace_atoms group 1D

Group ID used in the displace_atoms command does not exist.
Could not find dump custom compute 1D

The compute ID needed by dump custom to compute a per-atom quantity does not exist.

Could not find dump custom fix ID

Self-explanatory.
Could not find dump custom variable name

Self-explanatory.
Could not find dump group ID

A group ID used in the dump command does not exist.
Could not find dump local compute ID

Self-explanatory.
Could not find dump local fix ID

Self-explanatory.
Could not find dump modify compute ID

Self-explanatory.
Could not find dump modify fix 1D

Self-explanatory.
Could not find dump modify variable name

Self-explanatory.
Could not find fix ID to delete

Self-explanatory.
Could not find fix group ID

A group ID used in the fix command does not exist.
Could not find fix msst compute ID

Self-explanatory.
Could not find fix poems group 1D

A group ID used in the fix poems command does not exist.
Could not find fix recenter group ID

A group ID used in the fix recenter command does not exist.
Could not find fix rigid group ID

A group ID used in the fix rigid command does not exist.
Could not find fix srd group ID

Self-explanatory.
Could not find fix_modify 1D

A fix ID used in the fix_modify command does not exist.
Could not find fix_modify pressure ID

The compute ID for computing pressure does not exist.
Could not find fix_modify temperature ID

The compute ID for computing temperature does not exist.
Could not find group delete group ID

Self-explanatory.
Could not find set group ID

Group ID specified in set command does not exist.

Errors:

42

LIGGGHTS Users Manual

Could not find thermo compute ID
Compute ID specified in thermo_style command does not exist.
Could not find thermo custom compute 1D
The compute ID needed by thermo style custom to compute a requested quantity does not exist.
Could not find thermo custom fix ID
The fix ID needed by thermo style custom to compute a requested quantity does not exist.
Could not find thermo custom variable name
Self-explanatory.
Could not find thermo fix ID
Fix ID specified in thermo_style command does not exist.
Could not find thermo variable name
Self-explanatory.
Could not find thermo_modify pressure 1D
The compute ID needed by thermo style custom to compute pressure does not exist.
Could not find thermo_modify temperature ID
The compute ID needed by thermo style custom to compute temperature does not exist.
Could not find undump 1D
A dump ID used in the undump command does not exist.
Could not find velocity group ID
A group ID used in the velocity command does not exist.
Could not find velocity temperature ID
The compute ID needed by the velocity command to compute temperature does not exist.
Could not find/initialize a specified accelerator device
Could not initialize at least one of the devices specified for the gpu package
Could not grab element entry from EIM potential file
Self-explanatory
Could not grab global entry from EIM potential file
Self-explanatory.
Could not grab pair entry from EIM potential file
Self-explanatory.
Coulomb cutoffs of pair hybrid sub-styles do not match
If using a Kspace solver, all Coulomb cutoffs of long pair styles must be the same.
Cound not find dump_modify ID
Self-explanatory.
Create_atoms command before simulation box is defined
The create_atoms command cannot be used before a read_data, read_restart, or create_box command.
Create_atoms region ID does not exist
A region ID used in the create_atoms command does not exist.
Create_box region ID does not exist
A region ID used in the create_box command does not exist.
Create_box region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the create_box
command.
Cyclic loop in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a ring (or cycle).
Degenerate lattice primitive vectors
Invalid set of 3 lattice vectors for lattice command.
Delete region ID does not exist
Self-explanatory.
Delete_atoms command before simulation box is defined
The delete_atoms command cannot be used before a read_data, read_restart, or create_box command.
Delete_atoms cutoff > neighbor cutoff
Cannot delete atoms further away than a processor knows about.
Delete_atoms requires a pair style be defined

Errors: 43

LIGGGHTS Users Manual

This is because atom deletion within a cutoff uses a pairwise neighbor list.
Delete_bonds command before simulation box is defined
The delete_bonds command cannot be used before a read_data, read_restart, or create_box command.
Delete_bonds command with no atoms existing
No atoms are yet defined so the delete_bonds command cannot be used.
Deposition region extends outside simulation box
Self-explanatory.
Did not assign all atoms correctly
Atoms read in from a data file were not assigned correctly to processors. This is likely due to some
atom coordinates being outside a non-periodic simulation box.
Did not find all elements in MEAM library file
The requested elements were not found in the MEAM file.
Did not find fix shake partner info
Could not find bond partners implied by fix shake command. This error can be triggered if the
delete_bonds command was used before fix shake, and it removed bonds without resetting the 1-2,
1-3, 1-4 weighting list via the special keyword.
Did not find keyword in table file
Keyword used in pair_coeff command was not found in table file.
Did not set temp for fix rigid/nvt
The temp keyword must be used.
Dihedral atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular dihedral on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.
Dihedral atom missing in set command
The set command cannot find one or more atoms in a particular dihedral on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.
Dihedral atoms %d %d %d %d missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor.
Typically this is because the pairwise cutoff is set too short or the dihedral has blown apart and an
atom is too far away.
Dihedral charmm is incompatible with Pair style
Dihedral style charmm must be used with a pair style charmm in order for the 1-4 epsilon/sigma
parameters to be defined.
Dihedral coeff for hybrid has invalid style
Dihedral style hybrid uses another dihedral style as one of its coefficients. The dihedral style used in
the dihedral_coeff command or read from a restart file is not recognized.
Dihedral coeffs are not set
No dihedral coefficients have been assigned in the data file or via the dihedral_coeff command.
Dihedral style hybrid cannot have hybrid as an argument
Self-explanatory.
Dihedral style hybrid cannot have none as an argument
Self-explanatory.
Dihedral style hybrid cannot use same dihedral style twice
Self-explanatory.
Dihedral_coeff command before dihedral_style is defined
Coefficients cannot be set in the data file or via the dihedral_coeff command until an dihedral_style
has been assigned.
Dihedral_coeff command before simulation box is defined
The dihedral_coeff command cannot be used before a read_data, read_restart, or create_box
command.
Dihedral_coeff command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.
Dihedral_style command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.

Errors: 44

LIGGGHTS Users Manual

Dihedrals assigned incorrectly
Dihedrals read in from the data file were not assigned correctly to atoms. This means there is
something invalid about the topology definitions.
Dihedrals defined but no dihedral types
The data file header lists dihedrals but no dihedral types.
Dimension command after simulation box is defined
The dimension command cannot be used after a read_data, read_restart, or create_box command.
Displace_atoms command before simulation box is defined
The displace_atoms command cannot be used before a read_data, read_restart, or create_box
command.
Distance must be > 0 for compute event/displace
Self-explanatory.
Divide by 0 in influence function of pair peri/lps
This should not normally occur. It is likely a problem with your model.
Divide by 0 in variable formula
Self-explanatory.
Domain too large for neighbor bins
The domain has become extremely large so that neighbor bins cannot be used. Most likely, one or
more atoms have been blown out of the simulation box to a great distance.
Double precision is not supported on this accelerator
Self-explanatory
Dump cfg arguments can not mix xslyslzs with xsulysulzsu
Self-explanatory.
Dump cfg arguments must start with 'id type xs ys zs' or 'id type xsu ysu zsu'
This is a requirement of the CFG output format.
Dump cfg requires one snapshot per file
Use the wildcard "*" character in the filename.
Dump custom and fix not computed at compatible times
The fix must produce per-atom quantities on timesteps that dump custom needs them.
Dump custom compute does not calculate per-atom array
Self-explanatory.
Dump custom compute does not calculate per-atom vector
Self-explanatory.
Dump custom compute does not compute per-atom info
Self-explanatory.
Dump custom compute vector is accessed out-of-range
Self-explanatory.
Dump custom fix does not compute per-atom array
Self-explanatory.
Dump custom fix does not compute per-atom info
Self-explanatory.
Dump custom fix does not compute per-atom vector
Self-explanatory.
Dump custom fix vector is accessed out-of-range
Self-explanatory.
Dump custom variable is not atom-style variable
Only atom-style variables generate per-atom quantities, needed for dump output.
Dump dcd of non-matching # of atoms
Every snapshot written by dump dcd must contain the same # of atoms.
Dump dcd requires sorting by atom ID
Use the dump_modify sort command to enable this.
Dump every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Dump image bond not allowed with no bond types

Errors:

45

LIGGGHTS Users Manual

Self-explanatory.

Dump image cannot perform sorting
Self-explanatory.

Dump image persp option is not yet supported
Self-explanatory.

Dump image requires one snapshot per file
Use a "*" in the filename.

Dump local and fix not computed at compatible times
The fix must produce per-atom quantities on timesteps that dump local needs them.

Dump local attributes contain no compute or fix
Self-explanatory.

Dump local cannot sort by atom ID
This is because dump local does not really dump per-atom info.

Dump local compute does not calculate local array
Self-explanatory.

Dump local compute does not calculate local vector
Self-explanatory.

Dump local compute does not compute local info
Self-explanatory.

Dump local compute vector is accessed out-of-range
Self-explanatory.

Dump local count is not consistent across input fields
Every column of output must be the same length.

Dump local fix does not compute local array
Self-explanatory.

Dump local fix does not compute local info
Self-explanatory.

Dump local fix does not compute local vector
Self-explanatory.

Dump local fix vector is accessed out-of-range
Self-explanatory.

Dump modify bcolor not allowed with no bond types
Self-explanatory.

Dump modify bdiam not allowed with no bond types
Self-explanatory.

Dump modify compute ID does not compute per-atom array
Self-explanatory.

Dump modify compute ID does not compute per-atom info
Self-explanatory.

Dump modify compute ID does not compute per-atom vector
Self-explanatory.

Dump modify compute ID vector is not large enough
Self-explanatory.

Dump modify element names do not match atom types
Number of element names must equal number of atom types.

Dump modify fix ID does not compute per-atom array
Self-explanatory.

Dump modify fix ID does not compute per-atom info
Self-explanatory.

Dump modify fix ID does not compute per-atom vector
Self-explanatory.

Dump modify fix ID vector is not large enough
Self-explanatory.

Dump modify variable is not atom-style variable

Errors:

LIGGGHTS Users Manual

Self-explanatory.
Dump sort column is invalid
Self-explanatory.
Dump xtc requires sorting by atom ID
Use the dump_modify sort command to enable this.
Dump_modify region ID does not exist
Self-explanatory.
Dumping an atom property that isn't allocated
The chosen atom style does not define the per-atom quantity being dumped.
Dumping an atom quantity that isn't allocated
Only per-atom quantities that are defined for the atom style being used are allowed.
Duplicate particle in PeriDynamic bond - simulation box is too small
This is likely because your box length is shorter than 2 times the bond length.
Electronic temperature dropped below zero
Something has gone wrong with the fix ttm electron temperature model.
Empty brackets in variable
There is no variable syntax that uses empty brackets. Check the variable doc page.
Energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Expected floating point parameter in input script or data file
The quantity being read is an integer on non-numeric value.
Expected floating point parameter in variable definition
The quantity being read is a non-numeric value.
Expected integer parameter in input script or data file
The quantity being read is a floating point or non-numeric value.
Expected integer parameter in variable definition
The quantity being read is a floating point or non-numeric value.
Failed to allocate %ld bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Failed to reallocate %ld bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Fewer SRD bins than processors in some dimension
This is not allowed. Make your SRD bin size smaller.
Final box dimension due to fix deform is < 0.0
Self-explanatory.
Fix GCMC incompatible with given pair_style
Some pair_styles do not provide single-atom energies, which are needed by fix GCMC.
Fix GCMC molecule command requires atom attribute molecule
Should not choose the GCMC molecule feature if no molecules are being simulated. The general
molecule flag is off, but GCMC's molecule flag is on.
Fix GCMC molecule feature does not yet work
Fix GCMC cannot (yet) be used to exchange molecules, only atoms.
Fix GPU split must be positive for hybrid pair styles
Self-explanatory.
Fix ID for compute atom/molecule does not exist
Self-explanatory.
Fix ID for compute reduce does not exist
Self-explanatory.
Fix ID for compute slice does not exist
Self-explanatory.
Fix ID for fix ave/atom does not exist

Errors: 47

LIGGGHTS Users Manual

Self-explanatory.
Fix ID for fix ave/correlate does not exist
Self-explanatory.
Fix ID for fix ave/histo does not exist
Self-explanatory.
Fix ID for fix ave/spatial does not exist
Self-explanatory.
Fix ID for fix ave/time does not exist
Self-explanatory.
Fix ID for fix store/state does not exist
Self-explanatory
Fix ID must be alphanumeric or underscore characters
Self-explanatory.
Fix SRD no-slip requires atom attribute torque
This is because the SRD collisions will impart torque to the solute particles.
Fix SRD: bad bin assignment for SRD advection
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: bad search bin assignment
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: bad stencil bin for big particle
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: too many big particles in bin
Reset the ATOMPERBIN parameter at the top of fix_srd.cpp to a larger value, and re-compile the
code.
Fix SRD: too many walls in bin
This should not happen unless your system has been setup incorrectly.
Fix adapt kspace style does not exist
Self-explanatory.
Fix adapt pair style does not exist
Self-explanatory
Fix adapt pair style param not supported
The pair style does not know about the parameter you specified.
Fix adapt requires atom attribute diameter
The atom style being used does not specify an atom diameter.
Fix adapt type pair range is not valid for pair hybrid sub-style
Self-explanatory.
Fix ave/atom compute array is accessed out-of-range
Self-explanatory.
Fix ave/atom compute does not calculate a per-atom array
Self-explanatory.
Fix ave/atom compute does not calculate a per-atom vector
A compute used by fix ave/atom must generate per-atom values.
Fix ave/atom compute does not calculate per-atom values
A compute used by fix ave/atom must generate per-atom values.
Fix ave/atom fix array is accessed out-of-range
Self-explanatory.
Fix ave/atom fix does not calculate a per-atom array
Self-explanatory.
Fix ave/atom fix does not calculate a per-atom vector
A fix used by fix ave/atom must generate per-atom values.
Fix ave/atom fix does not calculate per-atom values
A fix used by fix ave/atom must generate per-atom values.
Fix ave/atom variable is not atom-style variable
A variable used by fix ave/atom must generate per-atom values.

Errors: 48

LIGGGHTS Users Manual

Fix ave/correlate compute does not calculate a scalar
Self-explanatory.

Fix ave/correlate compute does not calculate a vector
Self-explanatory.

Fix ave/correlate compute vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/correlate fix does not calculate a scalar
Self-explanatory.

Fix ave/correlate fix does not calculate a vector
Self-explanatory.

Fix ave/correlate fix vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/correlate variable is not equal-style variable
Self-explanatory.

Fix ave/histo cannot input local values in scalar mode
Self-explanatory.

Fix ave/histo cannot input per-atom values in scalar mode
Self-explanatory.

Fix ave/histo compute array is accessed out-of-range
Self-explanatory.

Fix ave/histo compute does not calculate a global array
Self-explanatory.

Fix ave/histo compute does not calculate a global scalar
Self-explanatory.

Fix ave/histo compute does not calculate a global vector
Self-explanatory.

Fix ave/histo compute does not calculate a local array
Self-explanatory.

Fix ave/histo compute does not calculate a local vector
Self-explanatory.

Fix ave/histo compute does not calculate a per-atom array
Self-explanatory.

Fix ave/histo compute does not calculate a per-atom vector
Self-explanatory.

Fix ave/histo compute does not calculate local values
Self-explanatory.

Fix ave/histo compute does not calculate per-atom values
Self-explanatory.

Fix ave/histo compute vector is accessed out-of-range
Self-explanatory.

Fix ave/histo fix array is accessed out-of-range
Self-explanatory.

Fix ave/histo fix does not calculate a global array
Self-explanatory.

Fix ave/histo fix does not calculate a global scalar
Self-explanatory.

Fix ave/histo fix does not calculate a global vector
Self-explanatory.

Fix ave/histo fix does not calculate a local array
Self-explanatory.

Fix ave/histo fix does not calculate a local vector
Self-explanatory.

Fix ave/histo fix does not calculate a per-atom array
Self-explanatory.

Errors:

49

LIGGGHTS Users Manual

Fix ave/histo fix does not calculate a per-atom vector
Self-explanatory.
Fix ave/histo fix does not calculate local values
Self-explanatory.
Fix ave/histo fix does not calculate per-atom values
Self-explanatory.
Fix ave/histo fix vector is accessed out-of-range
Self-explanatory.
Fix ave/histo input is invalid compute
Self-explanatory.
Fix ave/histo input is invalid fix
Self-explanatory.
Fix ave/histo input is invalid variable
Self-explanatory.
Fix ave/histo inputs are not all global, peratom, or local
All inputs in a single fix ave/histo command must be of the same style.
Fix ave/spatial compute does not calculate a per-atom array
Self-explanatory.
Fix ave/spatial compute does not calculate a per-atom vector
A compute used by fix ave/spatial must generate per-atom values.
Fix ave/spatial compute does not calculate per-atom values
A compute used by fix ave/spatial must generate per-atom values.
Fix ave/spatial compute vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/spatial fix does not calculate a per-atom array
Self-explanatory.
Fix ave/spatial fix does not calculate a per-atom vector
A fix used by fix ave/spatial must generate per-atom values.
Fix ave/spatial fix does not calculate per-atom values
A fix used by fix ave/spatial must generate per-atom values.
Fix ave/spatial fix vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/spatial for triclinic boxes requires units reduced
Self-explanatory.
Fix ave/spatial settings invalid with changing box
If the ave setting is "running" or "window" and the box size/shape changes during the simulation, then
the units setting must be "reduced", else the number of bins may change.
Fix ave/spatial variable is not atom-style variable
A variable used by fix ave/spatial must generate per-atom values.
Fix ave/time cannot set output array intensive/extensive from these inputs
One of more of the vector inputs has individual elements which are flagged as intensive or extensive.
Such an input cannot be flagged as all intensive/extensive when turned into an array by fix ave/time.
Fix ave/time cannot use variable with vector mode
Variables produce scalar values.
Fix ave/time columns are inconsistent lengths
Self-explanatory.
Fix ave/time compute array is accessed out-of-range
An index for the array is out of bounds.
Fix ave/time compute does not calculate a scalar
Self-explantory.
Fix ave/time compute does not calculate a vector
Self-explantory.
Fix ave/time compute does not calculate an array
Self-explanatory.

Errors: 50

LIGGGHTS Users Manual

Fix ave/time compute vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/time fix array is accessed out-of-range
An index for the array is out of bounds.
Fix ave/time fix does not calculate a scalar
Self-explanatory.
Fix ave/time fix does not calculate a vector
Self-explanatory.
Fix ave/time fix does not calculate an array
Self-explanatory.
Fix ave/time fix vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/time variable is not equal-style variable
Self-explanatory.
Fix balance string is invalid
The string can only contain the characters "x", "y", or "z".
Fix balance string is invalid for 2d simulation
The string cannot contain the letter "z".
Fix bond/break requires special_bonds = 0,1,1
This is a restriction of the current fix bond/break implementation.
Fix bond/create cutoff is longer than pairwise cutoff
This is not allowed because bond creation is done using the pairwise neighbor list.
Fix bond/create requires special_bonds coul = 0,1,1
Self-explanatory.
Fix bond/create requires special_bonds [j = 0,1,1
Self-explanatory.
Fix bond/swap cannot use dihedral or improper styles
These styles cannot be defined when using this fix.
Fix bond/swap requires pair and bond styles
Self-explanatory.
Fix bond/swap requires special_bonds = 0,1,1
Self-explanatory.
Fix box/relax generated negative box length
The pressure being applied is likely too large. Try applying it incrementally, to build to the high
pressure.
Fix command before simulation box is defined
The fix command cannot be used before a read_data, read_restart, or create_box command.
Fix deform cannot use yz variable with xy
The yz setting cannot be a variable if Xy deformation is also specified. This is because LAMMPS
cannot determine if the yz setting will induce a box flip which would be invalid if xy is also changing.
Fix deform is changing yz too much with xy
When both yz and xy are changing, it induces changes in xz if the box must flip from one tilt extreme
to another. Thus it is not allowed for yz to grow so much that a flip is induced.
Fix deform tilt factors require triclinic box
Cannot deform the tilt factors of a simulation box unless it is a triclinic (non-orthogonal) box.
Fix deform volume setting is invalid
Cannot use volume style unless other dimensions are being controlled.
Fix deposit region cannot be dynamic
Only static regions can be used with fix deposit.
Fix deposit region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix deposit
command.
Fix efield requires atom attribute g
Self-explanatory.

Errors: 51

LIGGGHTS Users Manual

Fix evaporate molecule requires atom attribute molecule
The atom style being used does not define a molecule ID.
Fix external callback function not set
This must be done by an external program in order to use this fix.
Fix for fix ave/atom not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/atom is requesting a value on a non-allowed
timestep.
Fix for fix ave/correlate not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/correlate is requesting a value on a
non-allowed timestep.
Fix for fix ave/histo not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/histo is requesting a value on a non-allowed
timestep.
Fix for fix ave/spatial not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/spatial is requesting a value on a
non-allowed timestep.
Fix for fix ave/time not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/time is requesting a value on a non-allowed
timestep.
Fix for fix store/state not computed at compatible time
Fixes generate their values on specific timesteps. Fix store/state is requesting a value on a
non-allowed timestep.
Fix freeze requires atom attribute torque
The atom style defined does not have this attribute.
Fix heat group has no atoms
Self-explanatory.
Fix heat kinetic energy went negative
This will cause the velocity rescaling about to be performed by fix heat to be invalid.
Fix in variable not computed at compatible time
Fixes generate their values on specific timesteps. The variable is requesting the values on a
non-allowed timestep.
Fix langevin angmom requires atom style ellipsoid
Self-explanatory.
Fix langevin angmom requires extended particles
This fix option cannot be used with point paritlces.
Fix langevin omega requires atom style sphere
Self-explanatory.
Fix langevin omega requires extended particles
One of the particles has radius 0.0.
Fix langevin period must be > 0.0
The time window for temperature relaxation must be > 0
Fix langevin variable returned negative temperature
Self-explanatory.
Fix momentum group has no atoms
Self-explanatory.
Fix move cannot define z or vz variable for 2d problem
Self-explanatory.
Fix move cannot have 0 length rotation vector
Self-explanatory.
Fix move cannot rotate aroung non z-axis for 2d problem
Self-explanatory.
Fix move cannot set linear z motion for 2d problem
Self-explanatory.
Fix move cannot set wiggle 7 motion for 2d problem

Errors: 52

LIGGGHTS Users Manual

Self-explanatory.
Fix msst compute ID does not compute potential energy
Self-explanatory.
Fix msst compute ID does not compute pressure
Self-explanatory.
Fix msst compute ID does not compute temperature
Self-explanatory.
Fix msst requires a periodic box
Self-explanatory.
Fix msst tscale must satisfy 0 <= tscale < 1
Self-explanatory.
Fix npt/nph has tilted box too far in one step - periodic cell is too far from equilibrium state
Self-explanatory. The change in the box tilt is too extreme on a short timescale.
Fix nve/asphere requires extended particles
This fix can only be used for particles with a shape setting.
Fix nve/asphere/noforce requires atom style ellipsoid
Self-explanatory.
Fix nve/asphere/noforce requires extended particles
One of the particles is not an ellipsoid.
Fix nve/line can only be used for 2d simulations
Self-explanatory.
Fix nve/line requires atom style line
Self-explanatory.
Fix nve/line requires line particles
Self-explanatory.
Fix nve/sphere requires atom attribute mu
An atom style with this attribute is needed.
Fix nve/sphere requires atom style sphere
Self-explanatory.
Fix nve/sphere requires extended particles
This fix can only be used for particles of a finite size.
Fix nve/tri can only be used for 3d simulations
Self-explanatory.
Fix nve/tri requires atom style tri
Self-explanatory.
Fix nve/tri requires tri particles
Self-explanatory.
Fix nvt/nph/npt asphere requires extended particles
The shape setting for a particle in the fix group has shape = 0.0, which means it is a point particle.
Fix nvt/nph/npt sphere requires atom style sphere
Self-explanatory.
Fix nvt/npt/nph damping parameters must be > 0.0
Self-explanatory.
Fix nvt/sphere requires extended particles
This fix can only be used for particles of a finite size.
Fix orient/fcc file open failed
The fix orient/fcc command could not open a specified file.
Fix orient/fcc file read failed
The fix orient/fcc command could not read the needed parameters from a specified file.
Fix orient/fcc found self twice
The neighbor lists used by fix orient/fcc are messed up. If this error occurs, it is likely a bug, so send
an email to the developers.
Fix peri neigh does not exist
Somehow a fix that the pair style defines has been deleted.

Errors: 53

http://lammps.sandia.gov/authors.html

LIGGGHTS Users Manual

Fix pour region ID does not exist

Self-explanatory.
Fix pour region cannot be dynamic

Only static regions can be used with fix pour.
Fix pour region does not support a bounding box

Not all regions represent bounded volumes. You cannot use such a region with the fix pour command.

Fix pour requires atom attributes radius, rmass
The atom style defined does not have these attributes.
Fix press/berendsen damping parameters must be > 0.0
Self-explanatory.
Fix geq/comb group has no atoms
Self-explanatory.
Fix geq/comb requires atom attribute q
An atom style with charge must be used to perform charge equilibration.
Fix reax/bonds numbonds > nsbmax_most
The limit of the number of bonds expected by the ReaxFF force field was exceeded.
Fix recenter group has no atoms
Self-explanatory.
Fix restrain requires an atom map, see atom_modify
Self-explanatory.
Fix rigid atom has non-zero image flag in a non-periodic dimension
You cannot set image flags for non-periodic dimensions.
Fix rigid langevin period must be > 0.0
Self-explanatory.
Fix rigid molecule requires atom attribute molecule
Self-explanatory.
Fix rigid xy torque cannot be on for 2d simulation
Self-explanatory.
Fix rigid 7 force cannot be on for 2d simulation
Self-explanatory.
Fix rigid/nvt period must be > 0.0
Self-explanatory
Fix rigid: Bad principal moments

The principal moments of inertia computed for a rigid body are not within the required tolerances.

Fix shake cannot be used with minimization
Cannot use fix shake while doing an energy minimization since it turns off bonds that should
contribute to the energy.

Fix spring couple group ID does not exist
Self-explanatory.

Fix srd lamda must be >= 0.6 of SRD grid size
This is a requirement for accuracy reasons.

Fix srd requires SRD particles all have same mass
Self-explanatory.

Fix srd requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

Fix srd requires newton pair on
Self-explanatory.

Fix store/state compute array is accessed out-of-range
Self-explanatory.

Fix store/state compute does not calculate a per-atom array
The compute calculates a per-atom vector.

Fix store/state compute does not calculate a per-atom vector
The compute calculates a per-atom vector.

Fix store/state compute does not calculate per-atom values

Errors:

54

LIGGGHTS Users Manual

Computes that calculate global or local quantities cannot be used with fix store/state.
Fix store/state fix array is accessed out-of-range
Self-explanatory.
Fix store/state fix does not calculate a per-atom array
The fix calculates a per-atom vector.
Fix store/state fix does not calculate a per-atom vector
The fix calculates a per-atom array.
Fix store/state fix does not calculate per-atom values
Fixes that calculate global or local quantities cannot be used with fix store/state.
Fix store/state for atom property that isn't allocated
Self-explanatory.
Fix store/state variable is not atom-style variable
Only atom-style variables calculate per-atom quantities.
Fix temp/berendsen period must be > 0.0
Self-explanatory.
Fix thermal/conductivity swap value must be positive
Self-explanatory.
Fix tmd must come after integration fixes
Any fix tmd command must appear in the input script after all time integration fixes (nve, nvt, npt).
See the fix tmd documentation for details.
Fix ttm electron temperatures must be > 0.0
Self-explanatory.
Fix ttm electronic_density must be > 0.0
Self-explanatory.
Fix ttm electronic_specific_heat must be > 0.0
Self-explanatory.
Fix ttm electronic_thermal_conductivity must be >= 0.0
Self-explanatory.
Fix ttm gamma_p must be > 0.0
Self-explanatory.
Fix ttm gamma_s must be >= 0.0
Self-explanatory.
Fix ttm number of nodes must be > 0
Self-explanatory.
Fix ttm v_0 must be >= 0.0
Self-explanatory.
Fix used in compute atom/molecule not computed at compatible time
The fix must produce per-atom quantities on timesteps that the compute needs them.
Fix used in compute reduce not computed at compatible time
Fixes generate their values on specific timesteps. Compute reduce is requesting a value on a
non-allowed timestep.
Fix used in compute slice not computed at compatible time
Fixes generate their values on specific timesteps. Compute slice is requesting a value on a
non-allowed timestep.
Fix viscosity swap value must be positive
Self-explanatory.
Fix viscosity vtarget value must be positive
Self-explanatory.
Fix wall cutoff <= 0.0
Self-explanatory.
Fix wall/colloid requires atom style sphere
Self-explanatory.
Fix wall/colloid requires extended particles
One of the particles has radius 0.0.

Errors:

LIGGGHTS Users Manual

Fix wall/gran is incompatible with Pair style
Must use a granular pair style to define the parameters needed for this fix.
Fix wall/gran requires atom style sphere
Self-explanatory.
Fix wall/piston command only available at zlo
The face keyword must be zlo.
Fix wall/region colloid requires atom style sphere
Self-explanatory.
Fix wall/region colloid requires extended particles
One of the particles has radius 0.0.
Fix wall/region cutoff <= 0.0
Self-explanatory.
Fix_modify order must be 3 or 5
Self-explanatory.
Fix_modify pressure ID does not compute pressure
The compute ID assigned to the fix must compute pressure.
Fix_modify temperature ID does not compute temperature
The compute ID assigned to the fix must compute temperature.
For triclinic deformation, specified target stress must be hydrostatic
Triclinic pressure control is allowed using the tri keyword, but non-hydrostatic pressure control can
not be used in this case.
Found no restart file matching pattern
When using a "*" in the restart file name, no matching file was found.
GPU library not compiled for this accelerator
Self-explanatory.
GPU particle split must be set to 1 for this pair style.
For this pair style, you cannot run part of the force calculation on the host. See the package command.
Gmask function in equal-style variable formula
Gmask is per-atom operation.
Gravity changed since fix pour was created
Gravity must be static and not dynamic for use with fix pour.
Gravity must point in -y to use with fix pour in 2d
Gravity must be pointing "down" in a 2d box.
Gravity must point in -z to use with fix pour in 3d
Gravity must be pointing "down" in a 3d box, i.e. theta = 180.0.
Grmask function in equal-style variable formula
Grmask is per-atom operation.
Group ID does not exist
A group ID used in the group command does not exist.
Group ID in variable formula does not exist
Self-explanatory.
Group command before simulation box is defined
The group command cannot be used before a read_data, read_restart, or create_box command.
Group region ID does not exist
A region ID used in the group command does not exist.
lllegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command.
You can use -echo screen as a command-line option when running LAMMPS to see the offending
line.
lllegal COMB parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal Stillinger-Weber parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal Tersoff parameter

Errors: 56

LIGGGHTS Users Manual

One or more of the coefficients defined in the potential file is invalid.
lllegal fix wall/piston velocity
The piston velocity must be positive.
lllegal integrate style
Self-explanatory.
lllegal number of angle table entries
There must be at least 2 table entries.
lllegal number of bond table entries
There must be at least 2 table entries.
lllegal number of pair table entries
There must be at least 2 table entries.
lllegal simulation box
The lower bound of the simulation box is greater than the upper bound.
Improper atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular improper on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.
Improper atom missing in set command
The set command cannot find one or more atoms in a particular improper on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.
Improper atoms %d %d %od %d missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular improper are missing on this processor.
Typically this is because the pairwise cutoff is set too short or the improper has blown apart and an
atom is too far away.
Improper coeff for hybrid has invalid style
Improper style hybrid uses another improper style as one of its coefficients. The improper style used
in the improper_coeff command or read from a restart file is not recognized.
Improper coeffs are not set
No improper coefficients have been assigned in the data file or via the improper_coeff command.
Improper style hybrid cannot have hybrid as an argument
Self-explanatory.
Improper style hybrid cannot have none as an argument
Self-explanatory.
Improper style hybrid cannot use same improper style twice
Self-explanatory.
Improper_coeff command before improper_style is defined
Coefficients cannot be set in the data file or via the improper_coeff command until an improper_style
has been assigned.
Improper_coeff command before simulation box is defined
The improper_coeff command cannot be used before a read_data, read_restart, or create_box
command.
Improper_coeff command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.
Improper_style command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.
Impropers assigned incorrectly
Impropers read in from the data file were not assigned correctly to atoms. This means there is
something invalid about the topology definitions.
Impropers defined but no improper types
The data file header lists improper but no improper types.
Inconsistent iparam/jparam values in fix bond/create command
If itype and jtype are the same, then their maxbond and newtype settings must also be the same.
Inconsistent line segment in data file
The end points of the line segment are not equal distances from the center point which is the atom
coordinate.

Errors: 57

LIGGGHTS Users Manual

Inconsistent triangle in data file
The centroid of the triangle as defined by the corner points is not the atom coordinate.
Incorrect args for angle coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for bond coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for improper coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for pair coefficients
Self-explanatory. Check the input script or data file.
Incorrect args in pair_style command
Self-explanatory.
Incorrect atom format in data file
Number of values per atom line in the data file is not consistent with the atom style.
Incorrect bonus data format in data file
See the read_data doc page for a description of how various kinds of bonus data must be formatted for
certain atom styles.
Incorrect boundaries with slab Ewald
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with Ewald.
Incorrect boundaries with slab PPPM
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with PPPM.
Incorrect element names in ADP potential file
The element names in the ADP file do not match those requested.
Incorrect element names in EAM potential file
The element names in the EAM file do not match those requested.
Incorrect format in COMB potential file
Incorrect number of words per line in the potential file.
Incorrect format in MEAM potential file
Incorrect number of words per line in the potential file.
Incorrect format in NEB coordinate file
Self-explanatory.
Incorrect format in Stillinger-Weber potential file
Incorrect number of words per line in the potential file.
Incorrect format in TMD target file
Format of file read by fix tmd command is incorrect.
Incorrect format in Tersoff potential file
Incorrect number of words per line in the potential file.
Incorrect multiplicity arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect sign arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect velocity format in data file
Each atom style defines a format for the Velocity section of the data file. The read-in lines do not
match.
Incorrect weight arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Index between variable brackets must be positive
Self-explanatory.
Indexed per-atom vector in variable formula without atom map
Accessing a value from an atom vector requires the ability to lookup an atom index, which is provided
by an atom map. An atom map does not exist (by default) for non-molecular problems. Using the
atom_modify map command will force an atom map to be created.

Errors: 58

LIGGGHTS Users Manual

Initial temperatures not all set in fix ttm
Self-explantory.
Input line quote not followed by whitespace
An end quote must be followed by whitespace.
Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.
Input line too long: %s
This is a hard (very large) limit defined in the input.cpp file.
Insertion region extends outside simulation box
Region specified with fix pour command extends outside the global simulation box.
Insufficient Jacobi rotations for POEMS body
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for rigid body
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for triangle
The calculation of the intertia tensor of the triangle failed. This should not happen if it is a reasonably
shaped triangle.
Insufficient memory on accelerator
There is insufficient memory on one of the devices specified for the gpu package
Invalid -reorder N value
Self-explanatory.
Invalid Boolean syntax in if command
Self-explanatory.
Invalid REAX atom type
There is a mis-match between LAMMPS atom types and the elements listed in the ReaxFF force field
file.
Invalid angle style
The choice of angle style is unknown.
Invalid angle table length
Length must be 2 or greater.
Invalid angle type in Angles section of data file
Angle type must be positive integer and within range of specified angle types.
Invalid angle type index for fix shake
Self-explanatory.
Invalid atom ID in Angles section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Atoms section of data file
Atom IDs must be positive integers.
Invalid atom ID in Bonds section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Bonus section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Dihedrals section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Impropers section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Velocities section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom mass for fix shake
Mass specified in fix shake command must be > 0.0.
Invalid atom style
The choice of atom style is unknown.
Invalid atom type in Atoms section of data file
Atom types must range from 1 to specified # of types.

Errors: 59

LIGGGHTS Users Manual

Invalid atom type in create_atoms command
The create_box command specified the range of valid atom types. An invalid type is being requested.
Invalid atom type in fix GCMC command
The atom type specified in the GCMC command does not exist.
Invalid atom type in fix bond/create command
Self-explanatory.
Invalid atom type in neighbor exclusion list
Atom types must range from 1 to Ntypes inclusive.
Invalid atom type index for fix shake
Atom types must range from 1 to Ntypes inclusive.
Invalid atom types in pair_write command
Atom types must range from 1 to Ntypes inclusive.
Invalid atom vector in variable formula
The atom vector is not recognized.
Invalid attribute in dump custom command
Self-explantory.
Invalid attribute in dump local command
Self-explantory.
Invalid attribute in dump modify command
Self-explantory.
Invalid bond style
The choice of bond style is unknown.
Invalid bond table length
Length must be 2 or greater.
Invalid bond type in Bonds section of data file
Bond type must be positive integer and within range of specified bond types.
Invalid bond type in fix bond/break command
Self-explanatory.
Invalid bond type in fix bond/create command
Self-explanatory.
Invalid bond type index for fix shake
Self-explanatory. Check the fix shake command in the input script.
Invalid coeffs for this dihedral style
Cannot set class 2 coeffs in data file for this dihedral style.
Invalid color in dump_modify command
The specified color name was not in the list of recognized colors. See the dump_modify doc page.
Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch LAMMPS.
Invalid compute ID in variable formula
The compute is not recognized.
Invalid compute style
Self-explanatory.
Invalid cutoff in communicate command
Specified cutoff must be >= 0.0.
Invalid cutoffs in pair_write command
Inner cutoff must be larger than 0.0 and less than outer cutoff.
Invalid dlI or d2 value for pair colloid coeff
Neither d1 or d2 can be < 0.
Invalid data file section: Angle Coeffs
Atom style does not allow angles.
Invalid data file section: AngleAngle Coeffs
Atom style does not allow impropers.
Invalid data file section: AngleAngleTorsion Coeffs

Errors: 60

LIGGGHTS Users Manual

Atom style does not allow dihedrals.
Invalid data file section: AngleTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Angles
Atom style does not allow angles.
Invalid data file section: Bond Coeffs
Atom style does not allow bonds.
Invalid data file section: BondAngle Coeffs
Atom style does not allow angles.
Invalid data file section: BondBond Coeffs
Atom style does not allow angles.
Invalid data file section: BondBondl13 Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Bonds
Atom style does not allow bonds.
Invalid data file section: Dihedral Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Dihedrals
Atom style does not allow dihedrals.
Invalid data file section: Ellipsoids
Atom style does not allow ellipsoids.
Invalid data file section: EndBondTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Improper Coeffs
Atom style does not allow impropers.
Invalid data file section: Impropers
Atom style does not allow impropers.
Invalid data file section: Lines
Atom style does not allow lines.
Invalid data file section: MiddleBondTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Triangles
Atom style does not allow triangles.
Invalid delta_conf in tad command
The value must be between 0 and 1 inclusive.
Invalid density in Atoms section of data file
Density value cannot be <= 0.0.
Invalid diameter in set command
Self-explanatory.
Invalid dihedral style
The choice of dihedral style is unknown.
Invalid dihedral type in Dihedrals section of data file
Dihedral type must be positive integer and within range of specified dihedral types.
Invalid dipole length in set command
Self-explanatory.
Invalid dump dcd filename
Filenames used with the dump dcd style cannot be binary or compressed or cause multiple files to be
written.
Invalid dump frequency
Dump frequency must be 1 or greater.
Invalid dump image element name
The specified element name was not in the standard list of elements. See the dump_modify doc page.
Invalid dump image filename
The file produced by dump image cannot be binary and must be for a single processor.

Errors: 61

LIGGGHTS Users Manual

Invalid dump image persp value
Persp value must be >= 0.0.
Invalid dump image theta value
Theta must be between 0.0 and 180.0 inclusive.
Invalid dump image zoom value
Zoom value must be > 0.0.
Invalid dump style
The choice of dump style is unknown.
Invalid dump xtc filename
Filenames used with the dump xtc style cannot be binary or compressed or cause multiple files to be
written.
Invalid dump xyz filename
Filenames used with the dump xyz style cannot be binary or cause files to be written by each
processor.
Invalid dump_modify threshhold operator
Operator keyword used for threshold specification in not recognized.
Invalid entry in -reorder file
Self-explanatory.
Invalid fix ID in variable formula
The fix is not recognized.
Invalid fix ave/time off column
Self-explantory.
Invalid fix box/relax command for a 2d simulation
Fix box/relax styles involving the z dimension cannot be used in a 2d simulation.
Invalid fix box/relax command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.
Invalid fix box/relax pressure settings
Settings for coupled dimensions must be the same.
Invalid fix nvt/npt/nph command for a 2d simulation
Cannot control z dimension in a 2d model.
Invalid fix nvt/npt/nph command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.
Invalid fix nvt/npt/nph pressure settings
Settings for coupled dimensions must be the same.
Invalid fix press/berendsen for a 2d simulation
The z component of pressure cannot be controlled for a 2d model.
Invalid fix press/berendsen pressure settings
Settings for coupled dimensions must be the same.
Invalid fix style
The choice of fix style is unknown.
Invalid flag in force field section of restart file
Unrecognized entry in restart file.
Invalid flag in header section of restart file
Unrecognized entry in restart file.
Invalid flag in type arrays section of restart file
Unrecognized entry in restart file.
Invalid frequency in temper command
Nevery must be > 0.
Invalid group ID in neigh_modify command
A group ID used in the neigh_modify command does not exist.
Invalid group function in variable formula
Group function is not recognized.
Invalid group in communicate command
Self-explanatory.

Errors: 62

LIGGGHTS Users Manual

Invalid image color range
The lo value in the range is larger than the hi value.
Invalid image up vector
Up vector cannot be (0,0,0).
Invalid improper style
The choice of improper style is unknown.
Invalid improper type in Impropers section of data file
Improper type must be positive integer and within range of specified improper types.
Invalid keyword in angle table parameters
Self-explanatory.
Invalid keyword in bond table parameters
Self-explanatory.
Invalid keyword in compute angle/local command
Self-explanatory.
Invalid keyword in compute bond/local command
Self-explanatory.
Invalid keyword in compute dihedral/local command
Self-explanatory.
Invalid keyword in compute improper/local command
Self-explanatory.
Invalid keyword in compute pair/local command
Self-explanatory.
Invalid keyword in compute property/atom command
Self-explanatory.
Invalid keyword in compute property/local command
Self-explanatory.
Invalid keyword in compute property/molecule command
Self-explanatory.
Invalid keyword in dump cfg command
Self-explanatory.
Invalid keyword in pair table parameters
Keyword used in list of table parameters is not recognized.
Invalid keyword in thermo_style custom command
One or more specified keywords are not recognized.
Invalid kspace style
The choice of kspace style is unknown.
Invalid length in set command
Self-explanatory.
Invalid mass in set command
Self-explanatory.
Invalid mass line in data file
Self-explanatory.
Invalid mass value
Self-explanatory.
Invalid math function in variable formula
Self-explanatory.
Invalid math/group/special function in variable formula
Self-explanatory.
Invalid option in lattice command for non-custom style
Certain lattice keywords are not supported unless the lattice style is "custom".
Invalid order of forces within respa levels
For respa, ordering of force computations within respa levels must obey certain rules. E.g. bonds
cannot be compute less frequently than angles, pairwise forces cannot be computed less frequently
than kspace, etc.

Errors:

LIGGGHTS Users Manual

Invalid pair style
The choice of pair style is unknown.
Invalid pair table cutoff
Cutoffs in pair_coeff command are not valid with read-in pair table.
Invalid pair table length
Length of read-in pair table is invalid
Invalid partitions in processors part command
Valid partitions are numbered 1 to N and the sender and receiver cannot be the same partition.
Invalid radius in Atoms section of data file
Radius must be >= 0.0.
Invalid random number seed in fix ttm command
Random number seed must be > 0.
Invalid random number seed in set command
Random number seed must be > 0.
Invalid region style
The choice of region style is unknown.
Invalid replace values in compute reduce
Self-explanatory.
Invalid run command N value
The number of timesteps must fit in a 32-bit integer. If you want to run for more steps than this,
perform multiple shorter runs.
Invalid run command start/stop value
Self-explanatory.
Invalid run command upto value
Self-explanatory.
Invalid seed for Marsaglia random # generator
The initial seed for this random number generator must be a positive integer less than or equal to 900
million.
Invalid seed for Park random # generator
The initial seed for this random number generator must be a positive integer.
Invalid shape in Ellipsoids section of data file
Self-explanatory.
Invalid shape in Triangles section of data file
Two or more of the triangle corners are duplicate points.
Invalid shape in set command
Self-explanatory.
Invalid shear direction for fix wall/gran
Self-explanatory.
Invalid special function in variable formula
Self-explanatory.
Invalid style in pair_write command
Self-explanatory. Check the input script.
Invalid syntax in variable formula
Self-explanatory.
Invalid t_event in prd command
Self-explanatory.
Invalid t_event in tad command
The value must be greater than 0.
Invalid thermo keyword in variable formula
The keyword is not recognized.
Invalid tmax in tad command
The value must be greater than 0.0.
Invalid type for mass set
Mass command must set a type from 1-N where N is the number of atom types.

Errors: 64

LIGGGHTS Users Manual

Invalid value in set command
The value specified for the setting is invalid, likely because it is too small or too large.
Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.
Invalid variable in next command
Self-explanatory.
Invalid variable name
Variable name used in an input script line is invalid.
Invalid variable name in variable formula
Variable name is not recognized.
Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.
Invalid wiggle direction for fix wall/gran
Self-explanatory.
Invoked angle equil angle on angle style none
Self-explanatory.
Invoked angle single on angle style none
Self-explanatory.
Invoked bond equil distance on bond style none
Self-explanatory.
Invoked bond single on bond style none
Self-explanatory.
Invoked pair single on pair style none
A command (e.g. a dump) attempted to invoke the single() function on a pair style none, which is
illegal. You are probably attempting to compute per-atom quantities with an undefined pair style.
KIM initialization failed
This is an error generated by the KIM library.
KIM neighbor iterator exceeded range
This should not happen. It likely indicates a bug in the KIM implementation of the interatomic
potential where it is requesting neighbors incorrectly.
KIM DIR environment variable is unset
This environment variable must be set to use pair_style kim. See the doc page for pair_style kim.
KSpace style has not yet been set
Cannot use kspace_modify command until a kspace style is set.
KSpace style is incompatible with Pair style
Setting a kspace style requires that a pair style with a long-range Coulombic component be selected.
Keyword %s in MEAM parameter file not recognized
Self-explanatory.
Kspace style pppm/tip4p requires newton on
Self-explanatory.
Kspace style requires atom attribute g
The atom style defined does not have these attributes.
Label wasn't found in input script
Self-explanatory.
Lattice orient vectors are not orthogonal
The three specified lattice orientation vectors must be mutually orthogonal.
Lattice orient vectors are not right-handed
The three specified lattice orientation vectors must create a right-handed coordinate system such that
al cross a2 = a3.
Lattice primitive vectors are collinear
The specified lattice primitive vectors do not for a unit cell with non-zero volume.
Lattice settings are not compatible with 2d simulation
One or more of the specified lattice vectors has a non-zero z component.
Lattice spacings are invalid

Errors: 65

LIGGGHTS Users Manual

Each x,y,z spacing must be > 0.
Lattice style incompatible with simulation dimension
2d simulation can use sq, sq2, or hex lattice. 3d simulation can use sc, bcc, or fcc lattice.
Log of zero/negative value in variable formula
Self-explanatory.
Lost atoms via balance: original %ld current %ld
This should not occur. Report the problem to the developers.
Lost atoms: original %ld current %ld
Lost atoms are checked for each time thermo output is done. See the thermo_modify lost command
for options. Lost atoms usually indicate bad dynamics, e.g. atoms have been blown far out of the
simulation box, or moved futher than one processor's sub-domain away before reneighboring.
MEAM library error %d
A call to the MEAM Fortran library returned an error.
MPI_LMP_BIGINT and bigint in Imptype.h are not compatible
The size of the MPI datatype does not match the size of a bigint.
MPI_LMP_TAGINT and tagint in Imptype.h are not compatible
The size of the MPI datatype does not match the size of a tagint.
Mass command before simulation box is defined
The mass command cannot be used before a read_data, read_restart, or create_box command.
Min_style command before simulation box is defined
The min_style command cannot be used before a read_data, read_restart, or create_box command.
Minimization could not find thermo_pe compute
This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.
Minimize command before simulation box is defined
The minimize command cannot be used before a read_data, read_restart, or create_box command.
Mismatched brackets in variable
Self-explanatory.
Mismatched compute in variable formula
A compute is referenced incorrectly or a compute that produces per-atom values is used in an
equal-style variable formula.
Mismatched fix in variable formula
A fix is referenced incorrectly or a fix that produces per-atom values is used in an equal-style variable
formula.
Mismatched variable in variable formula
A variable is referenced incorrectly or an atom-style variable that produces per-atom values is used in
an equal-style variable formula.
Molecular data file has too many atoms
These kids of data files are currently limited to a number of atoms that fits in a 32-bit integer.
Molecule count changed in compute atom/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute com/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute gyration/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute msd/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute property/molecule
Number of molecules must remain constant over time.
More than one fix deform
Only one fix deform can be defined at a time.
More than one fix freeze
Only one of these fixes can be defined, since the granular pair potentials access it.
More than one fix shake

Errors: 66

LIGGGHTS Users Manual

Only one fix shake can be defined.
Must define angle_style before Angle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define angle_style before BondAngle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define angle_style before BondBond Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define bond_style before Bond Coeffs
Must use a bond_style command before reading a data file that defines Bond Coeffs.
Must define dihedral_style before AngleAngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleAngleTorsion Coeffs.
Must define dihedral_style before AngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleTorsion Coeffs.
Must define dihedral_style before BondBondl3 Coeffs
Must use a dihedral_style command before reading a data file that defines BondBond13 Coeffs.
Must define dihedral_style before Dihedral Coeffs
Must use a dihedral_style command before reading a data file that defines Dihedral Coeffs.
Must define dihedral_style before EndBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines EndBondTorsion Coeffs.
Must define dihedral_style before MiddleBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines MiddleBondTorsion
Coeffs.
Must define improper_style before AngleAngle Coeffs
Must use an improper_style command before reading a data file that defines AngleAngle Coeffs.
Must define improper_style before Improper Coeffs
Must use an improper_style command before reading a data file that defines Improper Coeffs.
Must define lattice to append/atoms
A lattice must be defined before using this fix.
Must define pair_style before Pair Coeffs
Must use a pair_style command before reading a data file that defines Pair Coeffs.
Must have more than one processor partition to temper
Cannot use the temper command with only one processor partition. Use the -partition command-line
option.
Must read Atoms before Angles
The Atoms section of a data file must come before an Angles section.
Must read Atoms before Bonds
The Atoms section of a data file must come before a Bonds section.
Must read Atoms before Dihedrals
The Atoms section of a data file must come before a Dihedrals section.
Must read Atoms before Ellipsoids
The Atoms section of a data file must come before a Ellipsoids section.
Must read Atoms before Impropers
The Atoms section of a data file must come before an Impropers section.
Must read Atoms before Lines
The Atoms section of a data file must come before a Lines section.
Must read Atoms before Triangles
The Atoms section of a data file must come before a Triangles section.
Must read Atoms before Velocities
The Atoms section of a data file must come before a Velocities section.
Must set both respa inner and outer
Cannot use just the inner or outer option with respa without using the other.
Must shrink-wrap piston boundary
The boundary style of the face where the piston is applied must be of type s (shrink-wrapped).
Must specify a region in fix deposit

Errors: 67

LIGGGHTS Users Manual

The region keyword must be specified with this fix.
Must specify a region in fix pour
The region keyword must be specified with this fix.
Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option
must be used to specify a file.
Must use a block or cylinder region with fix pour
Self-explanatory.
Must use a block region with fix pour for 2d simulations
Self-explanatory.
Must use a bond style with TIP4P potential
TIP4P potentials assume bond lengths in water are constrained by a fix shake command.
Must use a molecular atom style with fix poems molecule
Self-explanatory.
Must use a z-axis cylinder with fix pour
The axis of the cylinder region used with the fix pour command must be oriented along the z
dimension.
Must use an angle style with TIP4P potential
TIP4P potentials assume angles in water are constrained by a fix shake command.
Must use atom style with molecule IDs with fix bond/swap
Self-explanatory.
Must use pair_style comb with fix geq/comb
Self-explanatory.
Must use variable energy with fix addforce
Must define an energy vartiable when applyting a dynamic force during minimization.
NEB command before simulation box is defined
Self-explanatory.
NEB requires damped dynamics minimizer
Use a different minimization style.
NEB requires use of fix neb
Self-explanatory.
NL ramp in wall/piston only implemented in zlo for now
The ramp keyword can only be used for piston applied to face zlo.
Needed bonus data not in data file
Some atom styles require bonus data. See the read_data doc page for details.
Needed topology not in data file
The header of the data file indicated that bonds or angles or dihedrals or impropers would be included,
but they were not present.
Neigh_modify exclude molecule requires atom attribute molecule
Self-explanatory.
Neigh_modify include group != atom_modify first group
Self-explanatory.
Neighbor delay must be 0 or multiple of every setting
The delay and every parameters set via the neigh_modify command are inconsistent. If the delay
setting is non-zero, then it must be a multiple of the every setting.
Neighbor include group not allowed with ghost neighbors
This is a current restriction within LAMMPS.
Neighbor list overflow, boost neigh_modify one
There are too many neighbors of a single atom. Use the neigh_modify command to increase the max
number of neighbors allowed for one atom. You may also want to boost the page size.
Neighbor list overflow, boost neigh_modify one or page
There are too many neighbors of a single atom. Use the neigh_modify command to increase the
neighbor page size and the max number of neighbors allowed for one atom.
Neighbor multi not yet enabled for ghost neighbors

Errors: 68

LIGGGHTS Users Manual

This is a current restriction within LAMMPS.
Neighbor multi not yet enabled for granular
Self-explanatory.
Neighbor multi not yet enabled for rRESPA
Self-explanatory.
Neighbor page size must be >= 10x the one atom setting
This is required to prevent wasting too much memory.
Neighbors of ghost atoms only allowed for full neighbor lists
This is a current restriction within LAMMPS.
New bond exceeded bonds per atom in fix bond/create
See the read_data command for info on setting the "extra bond per atom" header value to allow for
additional bonds to be formed.
New bond exceeded special list size in fix bond/create
See the special_bonds extra command for info on how to leave space in the special bonds list to allow
for additional bonds to be formed.
Newton bond change after simulation box is defined
The newton command cannot be used to change the newton bond value after a read_data, read_restart,
or create_box command.
No OpenMP support compiled in
An OpenMP flag is set, but LAMMPS was not built with OpenMP support.
No angle style is defined for compute angle/local
Self-explanatory.
No angles allowed with this atom style
Self-explanatory. Check data file.
No atoms in data file
The header of the data file indicated that atoms would be included, but they were not present.
No basis atoms in lattice
Basis atoms must be defined for lattice style user.
No bond style is defined for compute bond/local
Self-explanatory.
No bonds allowed with this atom style
Self-explanatory. Check data file.
No dihedral style is defined for compute dihedral/local
Self-explanatory.
No dihedrals allowed with this atom style
Self-explanatory. Check data file.
No dump custom arguments specified
The dump custom command requires that atom quantities be specified to output to dump file.
No dump local arguments specified
Self-explanatory.
No ellipsoids allowed with this atom style
Self-explanatory. Check data file.
No fix gravity defined for fix pour
Cannot add poured particles without gravity to move them.
No improper style is defined for compute improper/local
Self-explanatory.
No impropers allowed with this atom style
Self-explanatory. Check data file.
No lines allowed with this atom style
Self-explanatory. Check data file.
No matching element in ADP potential file
The ADP potential file does not contain elements that match the requested elements.
No matching element in EAM potential file
The EAM potential file does not contain elements that match the requested elements.

Errors: 69

LIGGGHTS Users Manual

No pair hbond/dreiding coefficients set
Self-explanatory.

No pair style defined for compute group/group
Cannot calculate group interactions without a pair style defined.

No pair style is defined for compute pair/local
Self-explanatory.

No pair style is defined for compute property/local
Self-explanatory.

No rigid bodies defined
The fix specification did not end up defining any rigid bodies.

No triangles allowed with this atom style
Self-explanatory. Check data file.

Non digit character between brackets in variable
Self-explantory.

Non integer # of swaps in temper command
Swap frequency in temper command must evenly divide the total # of timesteps.

Nprocs not a multiple of N for -reorder
Self-explanatory.

Numeric index is out of bounds
A command with an argument that specifies an integer or range of integers is using a value that is less
than 1 or greater than the maximum allowed limit.

One or more atoms belong to multiple rigid bodies
Two or more rigid bodies defined by the fix rigid command cannot contain the same atom.

One or zero atoms in rigid body
Any rigid body defined by the fix rigid command must contain 2 or more atoms.

Only zhi currently implemented for fix append/atoms
Self-explanatory.

Out of range atoms - cannot compute PPPM
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a
processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near
the boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance
without neighbor lists being rebuilt and atoms being migrated to new processors. This also means you
may be missing pairwise interactions that need to be computed. The solution is to change the
re-neighboring criteria via the neigh modify command. The safest settings are "delay 0 every 1 check
yes". Second, it may mean that an atom has moved far outside a processor's sub-domain or even the
entire simulation box. This indicates bad physics, e.g. due to highly overlapping atoms, too large a
timestep, etc.

Overlapping large/large in pair colloid
This potential is infinite when there is an overlap.

Overlapping small/large in pair colloid
This potential is inifinte when there is an overlap.

POEMS fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all poems fixes, else the fix contribution to the
pressure virial is incorrect.

PPPM grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested accuracy.

PPPM order cannot be greater than %d
Self-explanatory.

PPPM order has been reduced to 0
LAMMPS has attempted to reduce the PPPM order to enable the simulation to run, but can reduce the
order no further. Try increasing the accuracy of PPPM by reducing the tolerance size, thus inducing a
larger PPPM grid.

PRD command before simulation box is defined

Errors: 70

LIGGGHTS Users Manual

The prd command cannot be used before a read_data, read_restart, or create_box command.
PRD nsteps must be multiple of t_event

Self-explanatory.
PRD t_corr must be multiple of t_event

Self-explanatory.
PWD environment variable is unset

This environment variable must be set to use pair_style kim. See the doc page for pair_style kim.
Package command after simulation box is defined

The package command cannot be used afer a read_data, read_restart, or create_box command.
Package cuda command without USER-CUDA installed

The USER-CUDA package must be installed via "make yes-user-cuda" before LAMMPS is built.

Pair brownian requires atom style sphere
Self-explanatory.
Pair brownian requires extended particles
One of the particles has radius 0.0.
Pair brownian requires monodisperse particles
All particles must be the same finite size.
Pair brownian/poly requires atom style sphere
Self-explanatory.
Pair brownian/poly requires extended particles
One of the particles has radius 0.0.
Pair brownian/poly requires newton pair off
Self-explanatory.
Pair coeff for hybrid has invalid style
Style in pair coeff must have been listed in pair_style command.
Pair coul/wolf requires atom attribute g
The atom style defined does not have this attribute.
Pair cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Pair dipole/cut requires atom attributes g, mu, torque
The atom style defined does not have these attributes.
Pair distance < table inner cutoff
Two atoms are closer together than the pairwise table allows.
Pair distance > table outer cutoff
Two atoms are further apart than the pairwise table allows.
Pair dpd requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Pair gayberne epsilon a,b,c coeffs are not all set
Each atom type involved in pair_style gayberne must have these 3 coefficients set at least once.
Pair gayberne requires atom style ellipsoid
Self-explanatory.
Pair gayberne requires atoms with same type have same shape
Self-explanatory.
Pair gayberne/gpu requires atom style ellipsoid
Self-explanatory.
Pair gayberne/gpu requires atoms with same type have same shape
Self-explanatory.
Pair granular requires atom style sphere
Self-explanatory.
Pair granular requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Pair granular with shear history requires newton pair off
This is a current restriction of the implementation of pair granular styles with history.
Pair hybrid sub-style does not support single call

Errors:

71

LIGGGHTS Users Manual

You are attempting to invoke a single() call on a pair style that doesn't support it.
Pair hybrid sub-style is not used

No pair_coeff command used a sub-style specified in the pair_style command.
Pair inner cutoff < Respa interior cutoff

One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Pair inner cutoff >= Pair outer cutoff

The specified cutoffs for the pair style are inconsistent.
Pair line/lj requires atom style line

Self-explanatory.
Pair lubricate requires atom style sphere

Self-explanatory.
Pair lubricate requires ghost atoms store velocity

Use the communicate vel yes command to enable this.
Pair lubricate requires monodisperse particles

All particles must be the same finite size.
Pair lubricate/poly requires atom style sphere

Self-explanatory.
Pair lubricate/poly requires extended particles

One of the particles has radius 0.0.
Pair lubricate/poly requires ghost atoms store velocity

Use the communicate vel yes command to enable this.
Pair lubricate/poly requires newton pair off

Self-explanatory.
Pair lubricateU requires atom style sphere

Self-explanatory.
Pair lubricateU requires ghost atoms store velocity

Use the communicate vel yes command to enable this.
Pair lubricateU requires monodisperse particles

All particles must be the same finite size.
Pair lubricateU/poly requires ghost atoms store velocity

Use the communicate vel yes command to enable this.
Pair lubricateU/poly requires newton pair off

Self-explanatory.
Pair peri lattice is not identical in x, y, and z

The lattice defined by the lattice command must be cubic.
Pair peri requires a lattice be defined

Use the lattice command for this purpose.
Pair peri requires an atom map, see atom_modify

Even for atomic systems, an atom map is required to find Peridynamic bonds. Use the atom_modify

command to define one.
Pair resquared epsilon a,b,c coeffs are not all set

Self-explanatory.

Pair resquared epsilon and sigma coeffs are not all set
Self-explanatory.

Pair resquared requires atom style ellipsoid
Self-explanatory.

Pair resquared requires atoms with same type have same shape
Self-explanatory.

Pair resquared/gpu requires atom style ellipsoid
Self-explanatory.

Pair resquared/gpu requires atoms with same type have same shape
Self-explanatory.

Pair style AIREBO requires atom IDs
This is a requirement to use the AIREBO potential.

Errors: 72

LIGGGHTS Users Manual

Pair style AIREBO requires newton pair on
See the newton command. This is a restriction to use the AIREBO potential.
Pair style COMB requires atom IDs
This is a requirement to use the AIREBO potential.
Pair style COMB requires atom attribute q
Self-explanatory.
Pair style COMB requires newton pair on
See the newton command. This is a restriction to use the COMB potential.
Pair style MEAM requires newton pair on
See the newton command. This is a restriction to use the MEAM potential.
Pair style Stillinger-Weber requires atom IDs
This is a requirement to use the SW potential.
Pair style Stillinger-Weber requires newton pair on
See the newton command. This is a restriction to use the SW potential.
Pair style Tersoff requires atom IDs
This is a requirement to use the Tersoff potential.
Pair style Tersoff requires newton pair on
See the newton command. This is a restriction to use the Tersoff potential.
Pair style born/coul/long requires atom attribute q
An atom style that defines this attribute must be used.
Pair style born/coul/wolf requires atom attribute g
The atom style defined does not have this attribute.
Pair style buck/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Pair style buck/coul/long requires atom attribute q
The atom style defined does not have these attributes.
Pair style buck/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Pair style coul/cut requires atom attribute g
The atom style defined does not have these attributes.
Pair style coul/long/gpu requires atom attribute g
The atom style defined does not have these attributes.
Pair style does not have extra field requested by compute pair/local
The pair style does not support the pN value requested by the compute pair/local command.
Pair style does not support bond_style quartic
The pair style does not have a single() function, so it can not be invoked by bond_style quartic.
Pair style does not support compute group/group
The pair_style does not have a single() function, so it cannot be invokded by the compute group/group
command.
Pair style does not support compute pair/local
The pair style does not have a single() function, so it can not be invoked by compute pair/local.
Pair style does not support compute property/local
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.
Pair style does not support fix bond/swap
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.
Pair style does not support pair_write
The pair style does not have a single() function, so it can not be invoked by pair write.
Pair style does not support rRESPA inner/middle/outer
You are attempting to use rRESPA options with a pair style that does not support them.
Pair style granular with history requires atoms have IDs
Atoms in the simulation do not have IDs, so history effects cannot be tracked by the granular pair
potential.
Pair style hbond/dreiding requires an atom map, see atom_modify
Self-explanatory.

Errors: 73

LIGGGHTS Users Manual

Pair style hbond/dreiding requires atom IDs
Self-explanatory.
Pair style hbond/dreiding requires molecular system
Self-explanatory.
Pair style hbond/dreiding requires newton pair on
See the newton command for details.
Pair style hybrid cannot have hybrid as an argument
Self-explanatory.
Pair style hybrid cannot have none as an argument
Self-explanatory.
Pair style is incompatible with KSpace style
If a pair style with a long-range Coulombic component is selected, then a kspace style must also be
used.
Pair style kim requires newton pair off
This is a current restriction of the KIM library.
Pair style lj/charmm/coul/charmm requires atom attribute q
The atom style defined does not have these attributes.
Pair style [j/charmm/coul/long requires atom attribute q
The atom style defined does not have these attributes.
Pair style [j/charmm/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Pair style [j/class2/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Pair style [j/class2/coul/long requires atom attribute q
The atom style defined does not have this attribute.
Pair style lj/class2/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Pair style lj/cut/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Pair style [j/cut/coul/cut/gpu requires atom attribute g
The atom style defined does not have this attribute.
Pair style lj/cut/coul/long requires atom attribute q
The atom style defined does not have this attribute.
Pair style [j/cut/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Pair style [j/cut/coul/long/tip4p requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms
with a water molecule.
Pair style [j/cut/coul/long/tip4p requires atom attribute q
The atom style defined does not have these attributes.
Pair style [j/cut/coul/long/tip4p requires newton pair on
This is because the computation of constraint forces within a water molecule adds forces to atoms
owned by other processors.
Pair style lj/gromacs/coul/gromacs requires atom attribute q
An atom_style with this attribute is needed.
Pair style peri requires atom style peri
Self-explanatory.
Pair style reax requires atom IDs
This is a requirement to use the ReaxFF potential.
Pair style reax requires newton pair on
This is a requirement to use the ReaxFF potential.
Pair table cutoffs must all be equal to use with KSpace
When using pair style table with a long-range KSpace solver, the cutoffs for all atom type pairs must
all be the same, since the long-range solver starts at that cutoff.

Errors: 74

LIGGGHTS Users Manual

Pair table parameters did not set N
List of pair table parameters must include N setting.
Fair tersoff/zbl requires metal or real units
This is a current restriction of this pair potential.
Pair tri/lj requires atom style tri
Self-explanatory.
Pair yukawa/colloid requires atom style sphere
Self-explantory.
Pair yukawa/colloid requires atoms with same type have same radius
Self-explantory.
Pair_coeff command before pair_style is defined
Self-explanatory.
Pair_coeff command before simulation box is defined
The pair_coeff command cannot be used before a read_data, read_restart, or create_box command.
Pair_modify command before pair_style is defined
Self-explanatory.
Pair_write command before pair_style is defined
Self-explanatory.
Particle on or inside fix wall surface
Particles must be "exterior" to the wall in order for energy/force to be calculated.
Particle on or inside surface of region used in fix wall/region
Particles must be "exterior" to the region surface in order for energy/force to be calculated.
Per-atom compute in equal-style variable formula
Equal-style variables cannot use per-atom quantities.
Per-atom energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Per-atom fix in equal-style variable formula
Equal-style variables cannot use per-atom quantities.
Per-atom virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on
this timestep. See the variable doc page for ideas on how to make this work.
Per-processor system is too big
The number of owned atoms plus ghost atoms on a single processor must fit in 32-bit integer.
Potential energy ID for fix neb does not exist
Self-explanatory.
Potential energy ID for fix nvt/nph/npt does not exist
A compute for potential energy must be defined.
Potential file has duplicate entry
The potential file for a SW or Tersoff potential has more than one entry for the same 3 ordered
elements.
Potential file is missing an entry
The potential file for a SW or Tersoff potential does not have a needed entry.
Power by 0 in variable formula
Self-explanatory.
Pressure ID for fix box/relax does not exist
The compute ID needed to compute pressure for the fix does not exist.
Pressure ID for fix modify does not exist
Self-explanatory.
Pressure ID for fix npt/nph does not exist
Self-explanatory.
Pressure ID for fix press/berendsen does not exist
The compute ID needed to compute pressure for the fix does not exist.
Pressure ID for thermo does not exist

Errors: 75

LIGGGHTS Users Manual

The compute ID needed to compute pressure for thermodynamics does not exist.
Pressure control can not be used with fix nvt
Self-explanatory.
Pressure control can not be used with fix nvt/asphere
Self-explanatory.
Pressure control can not be used with fix nvt/sllod
Self-explanatory.
Pressure control can not be used with fix nvt/sphere
Self-explanatory.
Pressure control must be used with fix nph
Self-explanatory.
Pressure control must be used with fix nph/asphere
Self-explanatory.
Pressure control must be used with fix nph/sphere
Self-explanatory.
Pressure control must be used with fix nphug
A pressure control keyword (iso, aniso, tri, X, y, or z) must be provided.
Pressure control must be used with fix npt
Self-explanatory.
Pressure control must be used with fix npt/asphere
Self-explanatory.
Pressure control must be used with fix npt/sphere
Self-explanatory.
Processor count in z must be 1 for 2d simulation
Self-explanatory.
Processor partitions are inconsistent
The total number of processors in all partitions must match the number of processors LAMMPS is
running on.
Processors command after simulation box is defined
The processors command cannot be used after a read_data, read_restart, or create_box command.
Processors custom grid file is inconsistent
The vales in the custom file are not consistent with the number of processors you are running on or
the Px,Py,Pz settings of the processors command. Or there was not a setting for every processor.
Processors grid numa and map style are incompatible
Using numa for gstyle in the processors command requires using cart for the map option.
Processors part option and grid style are incompatible
Cannot use gstyle numa or custom with the part option.
Processors twogrid requires proc count be a multiple of core count
Self-explanatory.
Pstart and Pstop must have the same value
Self-explanatory.
RO < 0 for fix spring command
Equilibrium spring length is invalid.
Reax_defs.h setting for NATDEF is too small
Edit the setting in the ReaxFF library and re-compile the library and re-build LAMMPS.
Reax_defs.h setting for NNEIGHMAXDEF is too small
Edit the setting in the ReaxFF library and re-compile the library and re-build LAMMPS.
Receiving partition in processors part command is already a receiver
Cannot specify a partition to be a receiver twice.
Region ID for compute reduce/region does not exist
Self-explanatory.
Region ID for compute temp/region does not exist
Self-explanatory.
Region ID for dump custom does not exist

Errors:

LIGGGHTS Users Manual

Self-explanatory.

Region ID for fix addforce does not exist
Self-explanatory.

Region ID for fix ave/spatial does not exist
Self-explanatory.

Region ID for fix aveforce does not exist
Self-explanatory.

Region ID for fix deposit does not exist
Self-explanatory.

Region ID for fix evaporate does not exist
Self-explanatory.

Region ID for fix heat does not exist
Self-explanatory.

Region ID for fix setforce does not exist
Self-explanatory.

Region ID for fix wall/region does not exist
Self-explanatory.

Region ID in variable formula does not exist
Self-explanatory.

Region cannot have 0 length rotation vector
Self-explanatory.

Region intersect region ID does not exist
Self-explanatory.

Region union or intersect cannot be dynamic
The sub-regions can be dynamic, but not the combined region.
Region union region ID does not exist
One or more of the region IDs specified by the region union command does not exist.
Replacing a fix, but new style != old style
A fix ID can be used a 2nd time, but only if the style matches the previous fix. In this case it is
assumed you with to reset a fix's parameters. This error may mean you are mistakenly re-using a fix
ID when you do not intend to.
Replicate command before simulation box is defined
The replicate command cannot be used before a read_data, read_restart, or create_box command.
Replicate did not assign all atoms correctly
Atoms replicated by the replicate command were not assigned correctly to processors. This is likely
due to some atom coordinates being outside a non-periodic simulation box.
Replicated molecular system atom IDs are too big
See the setting for the allowed atom ID size in the src/lmptype.h file.
Replicated system is too big
See the setting for bigint in the src/Imptype.h file.
Resetting timestep is not allowed with fix move
This is because fix move is moving atoms based on elapsed time.
Respa inner cutoffs are invalid
The first cutoff must be <= the second cutoff.
Respa levels must be >= 1
Self-explanatory.
Respa middle cutoffs are invalid
The first cutoff must be <= the second cutoff.
Restrain atoms %d %d %od %d missing on proc %d at step %ld
The 4 atoms in a restrain dihedral specified by the fix restrain command are not all accessible to a
processor. This probably means an atom has moved too far.
Reuse of compute 1D
A compute ID cannot be used twice.
Reuse of dump 1D

Errors: 77

LIGGGHTS Users Manual

A dump ID cannot be used twice.
Reuse of region ID
A region ID cannot be used twice.
Rigid body has degenerate moment of inertia
Fix poems will only work with bodies (collections of atoms) that have non-zero principal moments of
inertia. This means they must be 3 or more non-collinear atoms, even with joint atoms removed.
Rigid fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all rigid fixes, else the rigid fix contribution to the
pressure virial is incorrect.
Rmask function in equal-style variable formula
Rmask is per-atom operation.
Run command before simulation box is defined
The run command cannot be used before a read_data, read_restart, or create_box command.
Run command start value is after start of run
Self-explanatory.
Run command stop value is before end of run
Self-explanatory.
Run_style command before simulation box is defined
The run_style command cannot be used before a read_data, read_restart, or create_box command.
SRD bin size for fix srd differs from user request
Fix SRD had to adjust the bin size to fit the simulation box. See the cubic keyword if you want this
message to be an error vs warning.
SRD bins for fix srd are not cubic enough
The bin shape is not within tolerance of cubic. See the cubic keyword if you want this message to be
an error vs warning.
SRD particle %d started inside big particle %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.
Same dimension twice in fix ave/spatial
Self-explanatory.
Sending partition in processors part command is already a sender
Cannot specify a partition to be a sender twice.
Set command before simulation box is defined
The set command cannot be used before a read_data, read_restart, or create_box command.
Set command with no atoms existing
No atoms are yet defined so the set command cannot be used.
Set region ID does not exist
Region ID specified in set command does not exist.
Shake angles have different bond types
All 3-atom angle-constrained SHAKE clusters specified by the fix shake command that are the same
angle type, must also have the same bond types for the 2 bonds in the angle.
Shake atoms %d %d %d %d missing on proc %d at step %ld
The 4 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake atoms %d %d %od missing on proc %d at step %ld
The 3 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake atoms %d %d missing on proc %d at step %ld
The 2 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake cluster of more than 4 atoms
A single cluster specified by the fix shake command can have no more than 4 atoms.
Shake clusters are connected
A single cluster specified by the fix shake command must have a single central atom with up to 3
other atoms bonded to it.

Errors: 78

LIGGGHTS Users Manual

Shake determinant = 0.0
The determinant of the matrix being solved for a single cluster specified by the fix shake command is
numerically invalid.
Shake fix must come before NPT/NPH fix
NPT fix must be defined in input script after SHAKE fix, else the SHAKE fix contribution to the
pressure virial is incorrect.
Small, tag, big integers are not sized correctly
See description of these 3 data types in src/lmptype.h.
Smallint setting in Imptype.h is invalid
It has to be the size of an integer.
Smallint setting in Imptype.h is not compatible
Smallint stored in restart file is not consistent with LAMMPS version you are running.
Specified processors != physical processors
The 3d grid of processors defined by the processors command does not match the number of
processors LAMMPS is being run on.
Specified target stress must be uniaxial or hydrostatic
Self-explanatory.
Sqrt of negative value in variable formula
Self-explanatory.
Substitution for illegal variable
Input script line contained a variable that could not be substituted for.
System in data file is too big
See the setting for bigint in the src/Imptype.h file.
TAD nsteps must be multiple of t_event
Self-explanatory.
TIP4P hydrogen has incorrect atom type
The TIP4P pairwise computation found an H atom whose type does not agree with the specified H
type.
TIP4P hydrogen is missing
The TIP4P pairwise computation failed to find the correct H atom within a water molecule.
TMD target file did not list all group atoms
The target file for the fix tmd command did not list all atoms in the fix group.
Tad command before simulation box is defined
Self-explanatory.
Tagint setting in Imptype.h is invalid
Tagint must be as large or larger than smallint.
Tagint setting in Imptype.h is not compatible
Smallint stored in restart file is not consistent with LAMMPS version you are running.
Target temperature for fix nvt/npt/nph cannot be 0.0
Self-explanatory.
Target temperature for fix rigid/nvt cannot be 0.0
Self-explanatory.
Temper command before simulation box is defined
The temper command cannot be used before a read_data, read_restart, or create_box command.
Temperature ID for fix bond/swap does not exist
Self-explanatory.
Temperature ID for fix box/relax does not exist
Self-explanatory.
Temperature ID for fix nvt/nph/npt does not exist
Self-explanatory.
Temperature ID for fix press/berendsen does not exist
Self-explanatory.
Temperature ID for fix temp/berendsen does not exist
Self-explanatory.

Errors: 79

LIGGGHTS Users Manual

Temperature ID for fix temp/rescale does not exist
Self-explanatory.
Temperature control can not be used with fix nph
Self-explanatory.
Temperature control can not be used with fix nph/asphere
Self-explanatory.
Temperature control can not be used with fix nph/sphere
Self-explanatory.
Temperature control must be used with fix nphug
The temp keyword must be provided.
Temperature control must be used with fix npt
Self-explanatory.
Temperature control must be used with fix npt/asphere
Self-explanatory.
Temperature control must be used with fix npt/sphere
Self-explanatory.
Temperature control must be used with fix nvt
Self-explanatory.
Temperature control must be used with fix nvt/asphere
Self-explanatory.
Temperature control must be used with fix nvt/sllod
Self-explanatory.
Temperature control must be used with fix nvt/sphere
Self-explanatory.
Temperature for fix nvt/sllod does not have a bias
The specified compute must compute temperature with a bias.
Tempering could not find thermo_pe compute
This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.
Tempering fix ID is not defined
The fix ID specified by the temper command does not exist.
Tempering temperature fix is not valid
The fix specified by the temper command is not one that controls temperature (nvt or langevin).
The package gpu command is required for gpu styles
Self-explanatory.
Thermo and fix not computed at compatible times
Fixes generate values on specific timesteps. The thermo output does not match these timesteps.
Thermo compute array is accessed out-of-range
Self-explanatory.
Thermo compute does not compute array
Self-explanatory.
Thermo compute does not compute scalar
Self-explanatory.
Thermo compute does not compute vector
Self-explanatory.
Thermo compute vector is accessed out-of-range
Self-explanatory.
Thermo custom variable cannot be indexed
Self-explanatory.
Thermo custom variable is not equal-style variable
Only equal-style variables can be output with thermodynamics, not atom-style variables.
Thermo every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Thermo fix array is accessed out-of-range

Errors: 80

LIGGGHTS Users Manual

Self-explanatory.
Thermo fix does not compute array
Self-explanatory.
Thermo fix does not compute scalar
Self-explanatory.
Thermo fix does not compute vector
Self-explanatory.
Thermo fix vector is accessed out-of-range
Self-explanatory.
Thermo keyword in variable requires lattice be defined
The xlat, ylat, zlat keywords refer to lattice properties.
Thermo keyword in variable requires thermo to use/init pe
You are using a thermo keyword in a variable that requires potential energy to be calculated, but your
thermo output does not use it. Add it to your thermo output.
Thermo keyword in variable requires thermo to use/init press
You are using a thermo keyword in a variable that requires pressure to be calculated, but your thermo
output does not use it. Add it to your thermo output.
Thermo keyword in variable requires thermo to use/init temp
You are using a thermo keyword in a variable that requires temperature to be calculated, but your
thermo output does not use it. Add it to your thermo output.
Thermo keyword requires lattice be defined
The xlat, ylat, zlat keywords refer to lattice properties.
Thermo style does not use press
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.
Thermo style does not use temp
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.
Thermo_modify int format does not contain d character
Self-explanatory.
Thermo_modify pressure ID does not compute pressure
The specified compute ID does not compute pressure.
Thermo_modify temperature ID does not compute temperature
The specified compute ID does not compute temperature.
Thermo_style command before simulation box is defined
The thermo_style command cannot be used before a read_data, read_restart, or create_box command.
This variable thermo keyword cannot be used between runs
Keywords that refer to time (such as cpu, elapsed) do not make sense in between runs.
Threshhold for an atom property that isn't allocated
A dump threshhold has been requested on a quantity that is not defined by the atom style used in this
simulation.
Timestep must be >= 0
Specified timestep is invalid.
Too big a problem to use velocity create loop all
The system size must fit in a 32-bit integer to use this option.
Too big a timestep
Specified timestep is too large.
Too big a timestep for dump dcd
The timestep must fit in a 32-bit integer to use this dump style.
Too big a timestep for dump xtc
The timestep must fit in a 32-bit integer to use this dump style.
Too few bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many atom sorting bins
This is likely due to an immense simulation box that has blown up to a large size.

Errors: 81

LIGGGHTS Users Manual

Too many atoms for dump dcd
The system size must fit in a 32-bit integer to use this dump style.
Too many atoms for dump xtc
The system size must fit in a 32-bit integer to use this dump style.
Too many atoms to dump sort
Cannot sort when running with more than 231 atoms.
Too many exponent bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many groups
The maximum number of atom groups (including the "all" group) is given by MAX_GROUP in
group.cpp and is 32.
Too many iterations
You must use a number of iterations that fit in a 32-bit integer for minimization.
Too many local+ghost atoms for neighbor list
The number of nlocal + nghost atoms on a processor is limited by the size of a 32-bit integer with 2
bits removed for masking 1-2, 1-3, 1-4 neighbors.
Too many mantissa bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many masses for fix shake
The fix shake command cannot list more masses than there are atom types.
Too many neighbor bins
This is likely due to an immense simulation box that has blown up to a large size.
Too many timesteps
The cummulative timesteps must fit in a 64-bit integer.
Too many timesteps for NEB
You must use a number of timesteps that fit in a 32-bit integer for NEB.
Too many total atoms
See the setting for bigint in the src/Imptype.h file.
Too many total bits for bitmapped lookup table
Table size specified via pair_modify command is too large. Note that a value of N generates a 2N
size table.
Too many touching neighbors - boost MAXTOUCH
A granular simulation has too many neighbors touching one atom. The MAXTOUCH parameter in
fix_shear_history.cpp must be set larger and LAMMPS must be re-built.
Too much per-proc info for dump
Number of local atoms times number of columns must fit in a 32-bit integer for dump.
Tree structure in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a tree structure.
Triclinic box skew is too large
The displacement in a skewed direction must be less than half the box length in that dimension. E.g.
the xy tilt must be between -half and +half of the x box length.
Tried to convert a double to int, but input_double > INT_MAX
Self-explanatory.
Two groups cannot be the same in fix spring couple
Self-explanatory.
USER-CUDA mode requires CUDA variant of min style
CUDA mode is enabled, so the min style must include a cuda suffix.
USER-CUDA mode requires CUDA variant of run style
CUDA mode is enabled, so the run style must include a cuda suffix.
USER-CUDA package requires a cuda enabled atom_style
Self-explanatory.
Unable to initialize accelerator for use

Errors: 82

LIGGGHTS Users Manual

There was a problem initializing an accelerator for the gpu package
Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.
Unexpected end of -reorder file
Self-explanatory.
Unexpected end of custom file
Self-explanatory.
Unexpected end of data file
LAMMPS hit the end of the data file while attempting to read a section. Something is wrong with the
format of the data file.
Units command after simulation box is defined
The units command cannot be used after a read_data, read_restart, or create_box command.
Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.
Unknown command: %s
The command is not known to LAMMPS. Check the input script.
Unknown error in GPU library
Self-explanatory.
Unknown identifier in data file: %s
A section of the data file cannot be read by LAMMPS.
Unknown table style in angle style table
Self-explanatory.
Unknown table style in bond style table
Self-explanatory.
Unknown table style in pair_style command
Style of table is invalid for use with pair_style table command.
Unrecognized lattice type in MEAM file 1
The lattice type in an entry of the MEAM library file is not valid.
Unrecognized lattice type in MEAM file 2
The lattice type in an entry of the MEAM parameter file is not valid.
Unrecognized pair style in compute pair command
Self-explanatory.
Use of change_box with undefined lattice
Must use lattice command with displace_box command if units option is set to lattice.
Use of compute temp/ramp with undefined lattice
Must use lattice command with compute temp/ramp command if units option is set to lattice.
Use of displace_atoms with undefined lattice
Must use lattice command with displace_atoms command if units option is set to lattice.
Use of fix append/atoms with undefined lattice
A lattice must be defined before using this fix.
Use of fix ave/spatial with undefined lattice
A lattice must be defined to use fix ave/spatial with units = lattice.
Use of fix deform with undefined lattice
A lattice must be defined to use fix deform with units = lattice.
Use of fix deposit with undefined lattice
Must use lattice command with compute fix deposit command if units option is set to lattice.
Use of fix dt/reset with undefined lattice
Must use lattice command with fix dt/reset command if units option is set to lattice.
Use of fix indent with undefined lattice
The lattice command must be used to define a lattice before using the fix indent command.
Use of fix move with undefined lattice
Must use lattice command with fix move command if units option is set to lattice.
Use of fix recenter with undefined lattice

Errors: 83

LIGGGHTS Users Manual

Must use lattice command with fix recenter command if units option is set to lattice.
Use of fix wall with undefined lattice
Must use lattice command with fix wall command if units option is set to lattice.
Use of fix wall/piston with undefined lattice
A lattice must be defined before using this fix.
Use of region with undefined lattice
If scale = lattice (the default) for the region command, then a lattice must first be defined via the
lattice command.
Use of velocity with undefined lattice
If scale = lattice (the default) for the velocity set or velocity ramp command, then a lattice must first
be defined via the lattice command.
Using fix nvt/sllod with inconsistent fix deform remap option
Fix nvt/sllod requires that deforming atoms have a velocity profile provided by "remap v" as a fix
deform option.
Using fix nvt/sllod with no fix deform defined
Self-explanatory.
Using fix srd with inconsistent fix deform remap option
When shearing the box in an SRD simulation, the remap v option for fix deform needs to be used.
Using pair lubricate with inconsistent fix deform remap option
If fix deform is used, the remap v option is required.
Using pair lubricate/poly with inconsistent fix deform remap option
If fix deform is used, the remap v option is required.
Variable evaluation before simulation box is defined
Cannot evaluate a compute or fix or atom-based value in a variable before the simulation has been
setup.
Variable for compute ti is invalid style
Self-explanatory.
Variable for dump every is invalid style
Only equal-style variables can be used.
Variable for dump image center is invalid style
Must be an equal-style variable.
Variable for dump image persp is invalid style
Must be an equal-style variable.
Variable for dump image phi is invalid style
Must be an equal-style variable.
Variable for dump image theta is invalid style
Must be an equal-style variable.
Variable for dump image zoom is invalid style
Must be an equal-style variable.
Variable for fix adapt is invalid style
Only equal-style variables can be used.
Variable for fix addforce is invalid style
Self-explanatory.
Variable for fix aveforce is invalid style
Only equal-style variables can be used.
Variable for fix deform is invalid style
The variable must be an equal-style variable.
Variable for fix efield is invalid style
Only equal-style variables can be used.
Variable for fix indent is invalid style
Only equal-style variables can be used.
Variable for fix indent is not equal style
Only equal-style variables can be used.
Variable for fix langevin is invalid style

Errors: 84

LIGGGHTS Users Manual

It must be an equal-style variable.
Variable for fix move is invalid style

Only equal-style variables can be used.
Variable for fix setforce is invalid style

Only equal-style variables can be used.
Variable for fix wall is invalid style

Only equal-style variables can be used.
Variable for fix wall/reflect is invalid style

Only equal-style variables can be used.
Variable for fix wall/srd is invalid style

Only equal-style variables can be used.
Variable for region is invalid style

Only equal-style variables can be used.
Variable for region is not equal style

Self-explanatory.
Variable for thermo every is invalid style

Only equal-style variables can be used.
Variable for velocity set is invalid style

Only atom-style variables can be used.
Variable formula compute array is accessed out-of-range

Self-explanatory.

Variable formula compute vector is accessed out-of-range
Self-explanatory.

Variable formula fix array is accessed out-of-range
Self-explanatory.

Variable formula fix vector is accessed out-of-range
Self-explanatory.

Variable name for compute atom/molecule does not exist
Self-explanatory.

Variable name for compute reduce does not exist
Self-explanatory.

Variable name for compute ti does not exist
Self-explanatory.

Variable name for dump every does not exist
Self-explanatory.

Variable name for dump image center does not exist
Self-explanatory.

Variable name for dump image persp does not exist
Self-explanatory.

Variable name for dump image phi does not exist
Self-explanatory.

Variable name for dump image theta does not exist
Self-explanatory.

Variable name for dump image zoom does not exist
Self-explanatory.

Variable name for fix adapt does not exist
Self-explanatory.

Variable name for fix addforce does not exist
Self-explanatory.

Variable name for fix ave/atom does not exist
Self-explanatory.

Variable name for fix ave/correlate does not exist
Self-explanatory.

Variable name for fix ave/histo does not exist

Errors:

85

LIGGGHTS Users Manual

Self-explanatory.
Variable name for fix ave/spatial does not exist
Self-explanatory.
Variable name for fix ave/time does not exist
Self-explanatory.
Variable name for fix aveforce does not exist
Self-explanatory.
Variable name for fix deform does not exist
Self-explantory.
Variable name for fix efield does not exist
Self-explanatory.
Variable name for fix indent does not exist
Self-explanatory.
Variable name for fix langevin does not exist
Self-explanatory.
Variable name for fix move does not exist
Self-explanatory.
Variable name for fix setforce does not exist
Self-explanatory.
Variable name for fix store/state does not exist
Self-explanatory.
Variable name for fix wall does not exist
Self-explanatory.
Variable name for fix wall/reflect does not exist
Self-explanatory.
Variable name for fix wall/srd does not exist
Self-explanatory.
Variable name for region does not exist
Self-explanatory.
Variable name for thermo every does not exist
Self-explanatory.
Variable name for velocity set does not exist
Self-explanatory.
Variable name must be alphanumeric or underscore characters
Self-explanatory.
Velocity command before simulation box is defined
The velocity command cannot be used before a read_data, read_restart, or create_box command.
Velocity command with no atoms existing
A velocity command has been used, but no atoms yet exist.
Velocity ramp in z for a 2d problem
Self-explanatory.
Velocity temperature ID does not compute temperature
The compute ID given to the velocity command must compute temperature.
Verlet/split requires 2 partitions
See the -partition command-line switch.
Verlet/split requires Rspace partition layout be multiple of Kspace partition layout in each dim
This is controlled by the processors command.
Verlet/split requires Rspace partition size be multiple of Kspace partition size
This is so there is an equal number of Rspace processors for every Kspace processor.
Virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on
this timestep. See the variable doc page for ideas on how to make this work.
Wall defined twice in fix wall command
Self-explanatory.

Errors: 86

LIGGGHTS Users Manual

Wall defined twice in fix wall/reflect command

Self-explanatory.
Wall defined twice in fix wall/srd command

Self-explanatory.
World variable count doesn't match # of partitions

A world-style variable must specify a number of values equal to the number of processor partitions.
Write_restart command before simulation box is defined

The write_restart command cannot be used before a read_data, read_restart, or create_box command.
Zero-length lattice orient vector

Self-explanatory.

Warnings:

Atom with molecule ID = 0 included in compute molecule group
The group used in a compute command that operates on moleclues includes atoms with no molecule
ID. This is probably not what you want.
Broken bonds will not alter angles, dihedrals, or impropers
See the doc page for fix bond/break for more info on this restriction.
Building an occasional neighobr list when atoms may have moved too far
This can cause LAMMPS to crash when the neighbor list is built. The solution is to check for building
the regular neighbor lists more frequently.
Compute cna/atom cutoff may be too large to find ghost atom neighbors
The neighbor cutoff used may not encompass enough ghost atoms to perform this operation correctly.
Computing temperature of portions of rigid bodies
The group defined by the temperature compute does not encompass all the atoms in one or more rigid
bodies, so the change in degrees-of-freedom for the atoms in those partial rigid bodies will not be
accounted for.
Created bonds will not create angles, dihedrals, or impropers
See the doc page for fix bond/create for more info on this restriction.
Dihedral problem: %od %ld %d %d %od %d
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation
geometry.
Dump dcd/xtc timestamp may be wrong with fix dt/reset
If the fix changes the timestep, the dump dcd file will not reflect the change.
FENE bond too long: %ld %od %d %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.
FENE bond too long: %ld %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.
Fix GCMC may delete atom with non-zero molecule 1D
This is probably an error, since you should not delete only one atom of a molecule. The GCMC
molecule exchange feature does not yet work.
Fix SRD walls overlap but fix srd overlap not set
You likely want to set this in your input script.
Fix bond/swap will ignore defined angles
See the doc page for fix bond/swap for more info on this restriction.
Fix evaporate may delete atom with non-zero molecule 1D
This is probably an error, since you should not delete only one atom of a molecule.
Fix move does not update angular momentum
Atoms store this quantity, but fix move does not (yet) update it.
Fix move does not update quaternions
Atoms store this quantity, but fix move does not (yet) update it.
Fix recenter should come after all other integration fixes

Warnings: 87

LIGGGHTS Users Manual

Other fixes may change the position of the center-of-mass, so fix recenter should come last.
Fix srd SRD moves may trigger frequent reneighboring
This is because the SRD particles may move long distances.
Fix srd grid size > 1/4 of big particle diameter
This may cause accuracy problems.
Fix srd particle moved outside valid domain
This may indicate a problem with your simulation parameters.
Fix srd particles may move > big particle diameter
This may cause accuracy problems.
Fix srd viscosity < 0.0 due to low SRD density
This may cause accuracy problems.
Fix thermal/conductivity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix thermal/conductivity comes first. If you
are using fix ave/spatial to measure the temperature profile induced by fix viscosity, then this may
cause a glitch in the profile since you are averaging immediately after swaps have occurred. Flipping
the order of the 2 fixes typically helps.
Fix viscosity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix viscosity comes first. If you are using fix
ave/spatial to measure the velocity profile induced by fix viscosity, then this may cause a glitch in the
profile since you are averaging immediately after swaps have occurred. Flipping the order of the 2
fixes typically helps.
Group for fix_modify temp != fix group
The fix_modify command is specifying a temperature computation that computes a temperature on a
different group of atoms than the fix itself operates on. This is probably not what you want to do.
Improper problem: %d %ld %d %d %od %d
Conformation of the 4 listed improper atoms is extreme; you may want to check your simulation
geometry.
Kspace_modify slab param < 2.0 may cause unphysical behavior
The kspace_modify slab parameter should be larger to insure periodic grids padded with empty space
do not overlap.
Less insertions than requested
Less atom insertions occurred on this timestep due to the fix pour command than were scheduled.
This is probably because there were too many overlaps detected.
Lost atoms via change_box: original %ld current %ld
The command options you have used caused atoms to be lost.
Lost atoms via displace_atoms: original %ld current %ld
The command options you have used caused atoms to be lost.
Lost atoms: original %ld current %ld
Lost atoms are checked for each time thermo output is done. See the thermo_modify lost command
for options. Lost atoms usually indicate bad dynamics, e.g. atoms have been blown far out of the
simulation box, or moved futher than one processor's sub-domain away before reneighboring.
Mismatch between velocity and compute groups
The temperature computation used by the velocity command will not be on the same group of atoms
that velocities are being set for.
More than one compute centro/atom
It is not efficient to use compute centro/atom more than once.
More than one compute cluster/atom
It is not efficient to use compute cluster/atom more than once.
More than one compute cna/atom defined
It is not efficient to use compute cna/atom more than once.
More than one compute coord/atom
It is not efficient to use compute coord/atom more than once.
More than one compute damage/atom
It is not efficient to use compute ke/atom more than once.

Warnings: 88

LIGGGHTS Users Manual

More than one compute ke/atom
It is not efficient to use compute ke/atom more than once.

More than one fix poems
It is not efficient to use fix poems more than once.

More than one fix rigid
It is not efficient to use fix rigid more than once.

New thermo_style command, previous thermo_modify settings will be lost
If a thermo_style command is used after a thermo_modify command, the settings changed by the
thermo_modify command will be reset to their default values. This is because the thermo_modify
commmand acts on the currently defined thermo style, and a thermo_style command creates a new
style.

No Kspace calculation with verlet/split
The 2nd partition performs a kspace calculation so the kspace_style command must be used.

No fixes defined, atoms won't move
If you are not using a fix like nve, nvt, npt then atom velocities and coordinates will not be updated
during timestepping.

No joints between rigid bodies, use fix rigid instead
The bodies defined by fix poems are not connected by joints. POEMS will integrate the body motion,
but it would be more efficient to use fix rigid.

Not using real units with pair reax
This is most likely an error, unless you have created your own ReaxFF parameter file in a different set
of units.

One or more atoms are time integrated more than once
This is probably an error since you typically do not want to advance the positions or velocities of an
atom more than once per timestep.

One or more compute molecules has atoms not in group
The group used in a compute command that operates on moleclues does not include all the atoms in
some molecules. This is probably not what you want.

One or more respa levels compute no forces
This is computationally inefficient.

Pair COMB charge %.10f with force %.10f hit max barrier
Something is possibly wrong with your model.

Pair COMB charge %.10f with force %.10f hit min barrier
Something is possibly wrong with your model.

Pair brownian needs newton pair on for momentum conservation
Self-explanatory.

Pair dpd needs newton pair on for momentum conservation
Self-explanatory.

Pair dsmc: num_of _collisions > number_of A
Collision model in DSMC is breaking down.

Pair dsmc: num_of _collisions > number_of B
Collision model in DSMC is breaking down.

Particle deposition was unsuccessful
The fix deposit command was not able to insert as many atoms as needed. The requested volume
fraction may be too high, or other atoms may be in the insertion region.

Reducing PPPM order b/c stencil extends beyond neighbor processor
LAMMPS is attempting this in order to allow the simulation to run. It should not effect the PPPM
accuracy.

Replacing a fix, but new group != old group
The ID and style of a fix match for a fix you are changing with a fix command, but the new group you
are specifying does not match the old group.

Replicating in a non-periodic dimension
The parameters for a replicate command will cause a non-periodic dimension to be replicated; this
may cause unwanted behavior.

Warnings: 89

LIGGGHTS Users Manual

Resetting reneighboring criteria during PRD
A PRD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since
these settings were not in place, LAMMPS changed them and will restore them to their original
values after the PRD simulation.

Resetting reneighboring criteria during TAD
A TAD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since
these settings were not in place, LAMMPS changed them and will restore them to their original
values after the PRD simulation.

Resetting reneighboring criteria during minimization
Minimization requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after
the minimization.

Restart file used different # of processors
The restart file was written out by a LAMMPS simulation running on a different number of
processors. Due to round-off, the trajectories of your restarted simulation may diverge a little more
quickly than if you ran on the same # of processors.

Restart file used different 3d processor grid
The restart file was written out by a LAMMPS simulation running on a different 3d grid of
processors. Due to round-off, the trajectories of your restarted simulation may diverge a little more
quickly than if you ran on the same # of processors.

Restart file used different boundary settings, using restart file values
Your input script cannot change these restart file settings.

Restart file used different newton bond setting, using restart file value
The restart file value will override the setting in the input script.

Restart file used different newton pair setting, using input script value
The input script value will override the setting in the restart file.

Restart file version does not match LAMMPS version
This may cause problems when reading the restart file.

Restrain problem: %d %ld %d %od %d %d
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation
geometry.

Running PRD with only one replica
This is allowed, but you will get no parallel speed-up.

SRD bin shifting turned on due to small lamda
This is done to try to preserve accuracy.

SRD bin size for fix srd differs from user request
Fix SRD had to adjust the bin size to fit the simulation box. See the cubic keyword if you want this
message to be an error vs warning.

SRD bins for fix srd are not cubic enough
The bin shape is not within tolerance of cubic. See the cubic keyword if you want this message to be
an error vs warning.

SRD particle %d started inside big particle %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.

Shake determinant < 0.0
The determinant of the quadratic equation being solved for a single cluster specified by the fix shake
command is numerically suspect. LAMMPS will set it to 0.0 and continue.

Should not allow rigid bodies to bounce off relecting walls
LAMMPS allows this, but their dynamics are not computed correctly.

System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0, which is not valid for Ewald or PPPM.

Table inner cutoff >= outer cutoff
You specified an inner cutoff for a Coulombic table that is longer than the global cutoff. Probably not
what you wanted.

Temperature for MSST is not for group all

Warnings: 90

LIGGGHTS Users Manual

User-assigned temperature to MSST fix does not compute temperature for all atoms. Since MSST
computes a global pressure, the kinetic energy contribution from the temperature is assumed to also
be for all atoms. Thus the pressure used by MSST could be inaccurate.

Temperature for NPT is not for group all
User-assigned temperature to NPT fix does not compute temperature for all atoms. Since NPT
computes a global pressure, the kinetic energy contribution from the temperature is assumed to also
be for all atoms. Thus the pressure used by NPT could be inaccurate.

Temperature for fix modify is not for group all
The temperature compute is being used with a pressure calculation which does operate on group all,
so this may be inconsistent.

Temperature for thermo pressure is not for group all
User-assigned temperature to thermo via the thermo_modify command does not compute temperature
for all atoms. Since thermo computes a global pressure, the kinetic energy contribution from the
temperature is assumed to also be for all atoms. Thus the pressure printed by thermo could be
inaccurate.

Too many common neighbors in CNA %d times
More than the maximum # of neighbors was found multiple times. This was unexpected.

Too many inner timesteps in fix ttm
Self-explanatory.

Too many neighbors in CNA for %d atoms
More than the maximum # of neighbors was found multiple times. This was unexpected.

Use special bonds = 0,1,1 with bond style fene
Most FENE models need this setting for the special_bonds command.

Use special bonds = 0,1,1 with bond style fene/expand
Most FENE models need this setting for the special_bonds command.

Using compute temp/deform with inconsistent fix deform remap option
Fix nvt/sllod assumes deforming atoms have a velocity profile provided by "remap v" or "remap
none" as a fix deform option.

Using compute temp/deform with no fix deform defined
This is probably an error, since it makes little sense to use compute temp/deform in this case.

Using fix srd with box deformation but no SRD thermostat
The deformation will heat the SRD particles so this can be dangerous.

Using pair tail corrections with nonperiodic system
This is probably a bogus thing to do, since tail corrections are computed by integrating the density of
a periodic system out to infinity.

Warnings: 91

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

7. Example problems

The LAMMPS distribution includes an examples sub-directory with several sample problems. Each problem
is in a sub-directory of its own. Most are 2d models so that they run quickly, requiring at most a couple of
minutes to run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*)
and dump file (dump.*) when it runs. Some use a data file (data.*) of initial coordinates as additional input. A
few sample log file outputs on different machines and different numbers of processors are included in the
directories to compare your answers to. E.g. a log file like log.crack.foo.P means it ran on P processors of
machine "foo".

The dump files produced by the example runs can be animated using the xmovie tool described in the
Additional Tools section of the LAMMPS documentation. Animations of many of these examples can be
viewed on the Movies section of the LAMMPS WWW Site.

These are the sample problems in the examples sub-directories:

colloid [big colloid particles in a small particle solvent, 2d system

comb |models using the COMB potential

crack |[crack propagation in a 2d solid

dipole |point dipolar particles, 2d system
eim NaCl using the EIM potential

ellipse [ellipsoidal particles in spherical solvent, 2d system

flow Couette and Poiseuille flow in a 2d channel

friction [frictional contact of spherical asperities between 2d surfaces

indent |[spherical indenter into a 2d solid

meam [MEAM test for SiC and shear (same as shear examples)

melt rapid melt of 3d LJ system

micelle [self-assembly of small lipid-like molecules into 2d bilayers

min energy minimization of 2d LJ melt
msst MSST shock dynamics
neb nudged elastic band (NEB) calculation for barrier finding

nemd [non-equilibrium MD of 2d sheared system

obstacle |flow around two voids in a 2d channel

peptide |dynamics of a small solvated peptide chain (5-mer)

peri Peridynamic model of cylinder impacted by indenter

pour |pouring of granular particles into a 3d box, then chute flow

prd parallel replica dynamics of a vacancy diffusion in bulk Si
reax RDX and TATB models using the ReaxFF
rigid |rigid bodies modeled as independent or coupled

shear |sideways shear applied to 2d solid, with and without a void

srd stochastic rotation dynamics (SRD) particles as solvent

Here is how you might run and visualize one of the sample problems:

cd indent
cp ../../src/lmp_linux . # copy LAMMPS executable to this dir
lmp_linux <in.indent # run the problem

7. Example problems 92

http://lammps.sandia.gov
http://lammps.sandia.gov

LIGGGHTS Users Manual

Running the simulation produces the files dump.indent and log.lammps. You can visualize the dump file as
follows:

../../tools/xmovie/xmovie -scale dump.indent

There is also an ELASTIC directory with an example script for computing elastic constants, using a zero
temperature Si example. See the in.elastic file for more info.

There is also a USER directory which contains subdirectories of user-provided examples for user packages.

See the README files in those directories for more info. See the doc/Section_start.html file for more info
about user packages.

7. Example problems

93

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

13. Future and history

This section lists features we plan to add to LAMMPS, features of previous versions of LAMMPS, and
features of other parallel molecular dynamics codes our group has distributed.

13.1 Coming attractions
13.2 Past versions

13.1 Coming attractions
The Wish list link on the LAMMPS WWW page gives a list of features we are hoping to add to LAMMPS in
the future, including contact names of individuals you can email if you are interested in contributing to the

developement or would be a future user of that feature.

You can also send email to the developers if you want to add your wish to the list.

13.2 Past versions

LAMMPS development began in the mid 1990s under a cooperative research & development agreement
(CRADA) between two DOE labs (Sandia and LLNL) and 3 companies (Cray, Bristol Myers Squibb, and
Dupont). The goal was to develop a large-scale parallel classical MD code; the coding effort was led by Steve
Plimpton at Sandia.

After the CRADA ended, a final F77 version, LAMMPS 99, was released. As development of LAMMPS
continued at Sandia, its memory management was converted to F90; a final F90 version was released as
LAMMPS 2001.

The current LAMMPS is a rewrite in C++ and was first publicly released as an open source code in 2004. It
includes many new features beyond those in LAMMPS 99 or 2001. It also includes features from older
parallel MD codes written at Sandia, namely ParaDyn, Warp, and GranFlow (see below).

In late 2006 we began merging new capabilities into LAMMPS that were developed by Aidan Thompson at
Sandia for his MD code GRASP, which has a parallel framework similar to LAMMPS. Most notably, these
have included many-body potentials - Stillinger-Weber, Tersoff, ReaxFF - and the associated
charge-equilibration routines needed for ReaxFF.

The History link on the LAMMPS WWW page gives a timeline of features added to the C++ open-source
version of LAMMPS over the last several years.

These older codes are available for download from the LAMMPS WWW site, except for Warp & GranFlow
which were primarily used internally. A brief listing of their features is given here.

LAMMPS 2001

¢ F90 + MPI

¢ dynamic memory

¢ spatial-decomposition parallelism

¢ NVE, NVT, NPT, NPH, rRESPA integrators

¢ L.J and Coulombic pairwise force fields

¢ all-atom, united-atom, bead-spring polymer force fields
¢ CHARMM-compatible force fields

13. Future and history 94

http://lammps.sandia.gov
http://lammps.sandia.gov/future.html
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov/history.html
http://lammps.sandia.gov

LIGGGHTS Users Manual

e class 2 force fields

e 3d/2d Ewald & PPPM

e various force and temperature constraints
e SHAKE

¢ Hessian-free truncated-Newton minimizer
e user-defined diagnostics

LAMMPS 99

¢ F77 + MPI

e static memory allocation

e spatial-decomposition parallelism

¢ most of the LAMMPS 2001 features with a few exceptions
® no 2d Ewald & PPPM

® molecular force fields are missing a few CHARMM terms
* no SHAKE

Warp

¢ FO0 + MPI

e spatial-decomposition parallelism

¢ embedded atom method (EAM) metal potentials + LJ

e Jattice and grain-boundary atom creation

e NVE, NVT integrators

® boundary conditions for applying shear stresses

¢ temperature controls for actively sheared systems

e per-atom energy and centro-symmetry computation and output

ParaDyn

e F77 + MPI

¢ atom- and force-decomposition parallelism

¢ embedded atom method (EAM) metal potentials

e Jattice atom creation

e NVE, NVT, NPT integrators

e all serial DYNAMO features for controls and constraints

GranFlow

¢ FOO0 + MPI

e spatial-decomposition parallelism

e frictional granular potentials

® NVE integrator

® boundary conditions for granular flow and packing and walls
e particle insertion

13.2 Past versions

LIGGGHTS Users Manual
Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

6. How-to discussions

This section describes how to perform common tasks using LAMMPS.

6.1 Restarting a simulation
6.2 2d simulations

6.3 CHARMM. AMBER. and DREIDING force fields

6.4 Running multiple simulations from one input script

6.5 Multi-replica simulations
6.6 Granular models

6.7 TIP3P water model
6.8 TIP4P water model
6.9 SPC water model

6.10 Coupling LAMMPS to other codes

6.11 Visualizing LAMMPS snapshots

6.12 Triclinic (non-orthogonal) simulation boxes

6.13 NEMD simulations

6.14 Extended spherical and aspherical particles

6.15 Qutput from LAMMPS (thermo. dumps. computes. fixes. variables)

6.16 Thermostatting, barostatting and computing temperature
6.17 Walls

6.18 Elastic constants

6.19 Library interface to LAMMPS
6.20 Calculating thermal conductivity
6.21 Calculating viscosity

The example input scripts included in the LAMMPS distribution and highlighted in Section_example also
show how to setup and run various kinds of simulations.

6.1 Restarting a simulation

There are 3 ways to continue a long LAMMPS simulation. Multiple run commands can be used in the same
input script. Each run will continue from where the previous run left off. Or binary restart files can be saved to
disk using the restart command. At a later time, these binary files can be read via a read restart command in a
new script. Or they can be converted to text data files and read by a read data command in a new script. This
section discusses the restart2data tool that is used to perform the conversion.

Here we give examples of 2 scripts that read either a binary restart file or a converted data file and then issue a
new run command to continue where the previous run left off. They illustrate what settings must be made in
the new script. Details are discussed in the documentation for the read restart and read data commands.

Look at the in.chain input script provided in the bench directory of the LAMMPS distribution to see the
original script that these 2 scripts are based on. If that script had the line

restart 50 tmp.restart
added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran.

This script could be used to read the 1st restart file and re-run the last 50 timesteps:

6. How-to discussions 96

http://lammps.sandia.gov

read_restart

neighbor
neigh_modify

LIGGGHTS Users Manual

tmp.restart.50

0.4 bin
every 1 delay 1

fix 1 all nve

fix 2 all langevin 1.0 1.0 10.0 904297
timestep 0.012

run 50

Note that the following commands do not need to be repeated because their settings are included in the restart
file: units, atom_style, special_bonds, pair_style, bond_style. However these commands do need to be used,
since their settings are not in the restart file: neighbor, fix, timestep.

If you actually use this script to perform a restarted run, you will notice that the thermodynamic data match at
step 50 (if you also put a "thermo 50" command in the original script), but do not match at step 100. This is
because the fix langevin command uses random numbers in a way that does not allow for perfect restarts.

As an alternate approach, the restart file could be converted to a data file using this tool:

restart2data tmp.restart.50 tmp.restart.data

Then, this script could be used to re-run the last 50 steps:

units
atom_style
pair_style
pair_modify
bond_style
special_bonds

read_data

neighbor
neigh_modify

fix
fix

timestep

reset_timestep
run

17

bond

1j/cut 1.12
shift yes
fene

0.0 1.0 1.0

tmp.restart.data

0.4 bin
every 1 delay 1

1 all nve
2 all langevin 1.0 1.0 10.0 904297

0.012

50
50

Note that nearly all the settings specified in the original in.chain script must be repeated, except the pair_coeff
and bond_coeff commands since the new data file lists the force field coefficients. Also, the reset timestep
command is used to tell LAMMPS the current timestep. This value is stored in restart files, but not in data

files.

6.2 2d simulations

Use the dimension command to specify a 2d simulation.

Make the simulation box periodic in z via the boundary command. This is the default.

6.1 Restarting a simulation

97

LIGGGHTS Users Manual

If using the create box command to define a simulation box, set the z dimensions narrow, but finite, so that the
create_atoms command will tile the 3d simulation box with a single z plane of atoms - e.g.

create box 1 -10 10 -10 10 -0.25 0.25

If using the read data command to read in a file of atom coordinates, set the "zlo zhi" values to be finite but
narrow, similar to the create_box command settings just described. For each atom in the file, assign a z
coordinate so it falls inside the z-boundaries of the box - e.g. 0.0.

Use the fix enforce2d command as the last defined fix to insure that the z-components of velocities and forces
are zeroed out every timestep. The reason to make it the last fix is so that any forces induced by other fixes
will be zeroed out.

Many of the example input scripts included in the LAMMPS distribution are for 2d models.
IMPORTANT NOTE: Some models in LAMMPS treat particles as extended spheres, as opposed to point

particles. In 2d, the particles will still be spheres, not disks, meaning their moment of inertia will be the same
as in 3d.

6.3 CHARMM, AMBER, and DREIDING force fields

A force field has 2 parts: the formulas that define it and the coefficients used for a particular system. Here we
only discuss formulas implemented in LAMMPS that correspond to formulas commonly used in the
CHARMM, AMBER, and DREIDING force fields. Setting coefficients is done in the input data file via the
read data command or in the input script with commands like pair_coeff or bond coeff. See Section_tools for
additional tools that can use CHARMM or AMBER to assign force field coefficients and convert their output
into LAMMPS input.

See (MacKerell) for a description of the CHARMM force field. See (Cornell) for a description of the AMBER
force field.

These style choices compute force field formulas that are consistent with common options in CHARMM or
AMBER. See each command's documentation for the formula it computes.

¢ bond style harmonic

¢ angle style charmm

¢ dihedral style charmm

¢ pair_style lj/charmm/coul/charmm

e pair_style lj/charmm/coul/charmm/implicit
¢ pair_style lj/charmm/coul/long

® special bonds charmm
¢ special bonds amber

DREIDING is a generic force field developed by the Goddard group at Caltech and is useful for predicting
structures and dynamics of organic, biological and main-group inorganic molecules. The philosophy in
DREIDING is to use general force constants and geometry parameters based on simple hybridization
considerations, rather than individual force constants and geometric parameters that depend on the particular
combinations of atoms involved in the bond, angle, or torsion terms. DREIDING has an explicit hydrogen
bond term to describe interactions involving a hydrogen atom on very electronegative atoms (N, O, F).

See (Mayo) for a description of the DREIDING force field

6.2 2d simulations 98

http://www.wag.caltech.edu

LIGGGHTS Users Manual

These style choices compute force field formulas that are consistent with the DREIDING force field. See each
command's documentation for the formula it computes.

¢ bond style harmonic
¢ bond style morse

¢ angle style harmonic

e angle style cosine
e angle style cosine/periodic

e dihedral style charmm
¢ improper_style umbrella

® pair_style buck
¢ pair_style buck/coul/cut

e pair_style buck/coul/long
e pair_style lj/cut

e pair_style lj/cut/coul/cut
e pair_style lj/cut/coul/long

e pair_style hbond/dreiding/lj
e pair_style hbond/dreiding/morse

e special bonds dreiding

6.4 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how

these examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the

run command multiple times. For example, this script

units 17
atom_style atomic
read_data data.lj

run
run
run
run
run

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

10000
10000
10000
10000
10000

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize LAMMPS. For example, this script

units 17
atom_style atomic
read_data data.lj

run

10000

clear

units 17

atom_style atomic
read_data data.lj.new

run

10000

6.3 CHARMM, AMBER, and DREIDING force fields

99

LIGGGHTS Users Manual

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to
loop over the same input script multiple times with different settings. For example, this script, named
in.polymer

variable d index runl run2 run3 rund4 run5 run6 run7 run8
shell cd $d

read_data data.polymer

run 10000

shell cd ..

clear

next d

jump in.polymer

would run 8 simulations in different directories, using a data.polymer file in each directory. The same concept
could be used to run the same system at 8 different temperatures, using a temperature variable and storing the
output in different log and dump files, for example

variable a loop 8

variable t index 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15
log log.Sa

read data.polymer

velocity all create $t 352839
fix 1 all nvt $t $t 100.0
dump 1 all atom 1000 dump.S$a
run 100000

next t

next a

jump in.polymer

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running LAMMPS on a single partition of processors. LAMMPS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if LAMMPS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next t" and "next a" commands would need to be replaced with a single "next a t" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished,
that partition would then start the 4th simulation, and so forth, until all 8 were completed.

6.5 Multi-replica simulations

Several commands in LAMMPS run mutli-replica simulations, meaning that multiple instances (replicas) of
your simulation are run simultaneously, with small amounts of data exchanged between replicas periodically.

These are the relevant commands:

® neb for nudged elastic band calculations
¢ prd for parallel replica dynamics

¢ tad for temperature accelerated dynamics
e temper for parallel tempering

NEB is a method for finding transition states and barrier energies. PRD and TAD are methods for performing

accelerated dynamics to find and perform infrequent events. Parallel tempering or replica exchange runs
different replicas at a series of temperature to facilitate rare-event sampling.

6.4 Running multiple simulations from one input script 100

LIGGGHTS Users Manual

These command can only be used if LAMMPS was built with the "replica" package. See the Making
LAMMPS section for more info on packages.

In all these cases, you must run with one or more processors per replica. The processors assigned to each
replica are determined at run-time by using the -partition command-line switch to launch LAMMPS on
multiple partitions, which in this context are the same as replicas. E.g. these commands:

mpirun -np 16 Imp_linux -partition 8x2 -in in.temper
mpirun -np 8 Ilmp_linux -partition 8xl -in in.neb

would each run 8 replicas, on either 16 or 8 processors. Note the use of the -in command-line switch to
specify the input script which is required when running in multi-replica mode.

Also note that with MPI installed on a machine (e.g. your desktop), you can run on more (virtual) processors
than you have physical processors. Thus the above commands could be run on a single-processor (or
few-processor) desktop so that you can run a multi-replica simulation on more replicas than you have physical
processors.

6.6 Granular models

Granular system are composed of spherical particles with a diameter, as opposed to point particles. This
means they have an angular velocity and torque can be imparted to them to cause them to rotate.

To run a simulation of a granular model, you will want to use the following commands:

e atom_style sphere

¢ fix nve/sphere
e fix gravity

This compute

® compute erotatezsphere

calculates rotational kinetic energy which can be output with thermodynamic info.
Use one of these 3 pair potentials, which compute forces and torques between interacting pairs of particles:
® pair_style gran/history
® pair_style gran/no_history
® pair_style gran/hertzian
These commands implement fix options specific to granular systems:
o fix freeze
e fix pour
e fix viscous

e fix wall/gran

The fix style freeze zeroes both the force and torque of frozen atoms, and should be used for granular system
instead of the fix style setforce.

For computational efficiency, you can eliminate needless pairwise computations between frozen atoms by
using this command:

6.5 Multi-replica simulations 101

LIGGGHTS Users Manual

¢ neigh modify exclude

6.7 TIP3P water model

The TIP3P water model as implemented in CHARMM (MacKerell) specifies a 3-site rigid water molecule
with charges and Lennard-Jones parameters assigned to each of the 3 atoms. In LAMMPS the fix shake
command can be used to hold the two O-H bonds and the H-O-H angle rigid. A bond style of harmonic and an
angle style of harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a
rigid TIP3P-CHARMM model with a cutoff. The K values can be used if a flexible TIP3P model (without fix
shake) is desired. If the LJ epsilon and sigma for HH and OH are set to 0.0, it corresponds to the original 1983
TIP3P model (Jorgensen).

O mass = 15.9994
H mass = 1.008

O charge =-0.834
H charge = 0.417

LJ epsilon of OO =0.1521
LJ sigma of OO = 3.1507
LJ epsilon of HH = 0.0460
LJ sigma of HH = 0.4000
LJ epsilon of OH = 0.0836
LJ sigma of OH = 1.7753

K of OH bond =450
r0 of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

These are the parameters to use for TIP3P with a long-range Coulombic solver (Ewald or PPPM in
LAMMPS), see (Price) for details:

O mass = 15.9994
H mass = 1.008

O charge =-0.830
H charge =0.415

LJ epsilon of OO =0.102
LJ sigma of OO = 3.188
LJ epsilon, sigma of OH, HH = 0.0

K of OH bond =450
r0 of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

Wikipedia also has a nice article on water models.

6.6 Granular models 102

http://en.wikipedia.org/wiki/Water_model

LIGGGHTS Users Manual

6.8 TIP4P water model

The four-point TIP4P rigid water model extends the traditional three-point TIP3P model by adding an
additional site, usually massless, where the charge associated with the oxygen atom is placed. This site M is
located at a fixed distance away from the oxygen along the bisector of the HOH bond angle. A bond style of
harmonic and an angle style of harmonic or charmm should also be used.

A TIP4P model is run with LAMMPS using two commands:

e pair_style lj/cut/coul/long/tip4
® kspace style pppm/tip4p

Note that only a TIP4P model with long-range Coulombics is currently implemented. A cutoff version may be
added in the future. for both models, the bond lengths and bond angles should be held fixed using the fix
shake command.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a
rigid TIP4P model with a cutoff (Jorgensen). Note that the OM distance is specified in the pair_style
command, not as part of the pair coefficients.

O mass = 15.9994
H mass = 1.008

O charge =-1.040
H charge = 0.520

r0 of OH bond = 0.9572
theta of HOH angle = 104.52

OM distance = 0.15

LJ epsilon of O-O = 0.1550

LJ sigma of O-O =3.1536

LJ epsilon, sigma of OH, HH = 0.0

These are the parameters to use for TIP4AP with a long-range Coulombic solver (Ewald or PPPM in
LAMMPS):

O mass = 15.9994
H mass = 1.008

O charge =-1.0484
H charge = 0.5242

r0 of OH bond = 0.9572
theta of HOH angle = 104.52

OM distance = 0.1250
LJ epsilon of O-O =0.16275

LJ sigma of O-O = 3.16435
LJ epsilon, sigma of OH, HH = 0.0

6.7 TIP3P water model 103

LIGGGHTS Users Manual

Note that the when using the TIP4P pair style, the neighobr list cutoff for Coulomb interactions is effectively
extended by a distance 2 * (OM distance), to account for the offset distance of the fictitious charges on O
atoms in water molecules. Thus it is typically best in an efficiency sense to use a LJ cutoff >= Coulomb cutoff
+ 2*%(OM distance), to shrink the size of the neighbor list. This leads to slightly larger cost for the long-range
calculation, so you can test the trade-off for your model. The OM distance and the LJ and Coulombic cutoffs

are set in the pair_style lj/cut/coul/long/tip4p command.

Wikipedia also has a nice article on water models.

6.9 SPC water model

The SPC water model specifies a 3-site rigid water molecule with charges and Lennard-Jones parameters
assigned to each of the 3 atoms. In LAMMPS the fix shake command can be used to hold the two O-H bonds
and the H-O-H angle rigid. A bond style of harmonic and an angle style of harmonic or charmm should also
be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a
rigid SPC model.

O mass = 15.9994
H mass = 1.008

O charge =-0.820
H charge = 0.410

LJ epsilon of OO =0.1553
LJ sigma of OO =3.166
LJ epsilon, sigma of OH, HH = 0.0

r0 of OH bond = 1.0
theta of HOH angle = 109.47

Note that as originally proposed, the SPC model was run with a 9 Angstrom cutoff for both LJ and
Coulommbic terms. It can also be used with long-range Coulombics (Ewald or PPPM in LAMMPS), without
changing any of the parameters above, though it becomes a different model in that mode of usage.

The SPC/E (extended) water model is the same, except the partial charge assignemnts change:

O charge =-0.8476
H charge = 0.4238

See the (Berendsen) reference for more details on both the SPC and SPC/E models.

Wikipedia also has a nice article on water models.

6.10 Coupling LAMMPS to other codes

LAMMPS is designed to allow it to be coupled to other codes. For example, a quantum mechanics code might
compute forces on a subset of atoms and pass those forces to LAMMPS. Or a continuum finite element (FE)
simulation might use atom positions as boundary conditions on FE nodal points, compute a FE solution, and
return interpolated forces on MD atoms.

6.8 TIP4P water model 104

http://en.wikipedia.org/wiki/Water_model
http://en.wikipedia.org/wiki/Water_model

LIGGGHTS Users Manual

LAMMPS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which
you'll have to think about in the context of your application.

(1) Define a new fix command that calls the other code. In this scenario, LAMMPS is the driver code. During
its timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to
LAMMPS as a library. This is the way the POEMS package that performs constrained rigid-body motion on
groups of atoms is hooked to LAMMPS. See the fix_poems command for more details. See this section of the
documentation for info on how to add a new fix to LAMMPS.

(2) Define a new LAMMPS command that calls the other code. This is conceptually similar to method (1), but
in this case LAMMPS and the other code are on a more equal footing. Note that now the other code is not
called during the timestepping of a LAMMPS run, but between runs. The LAMMPS input script can be used
to alternate LAMMPS runs with calls to the other code, invoked via the new command. The run command
facilitates this with its every option, which makes it easy to run a few steps, invoke the command, run a few
steps, invoke the command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked
by a system() call made by the command (assuming your parallel machine allows one or more processors to
start up another program). In the latter case the stand-alone code could communicate with LAMMPS thru files
that the command writes and reads.

See Section _modify of the documentation for how to add a new command to LAMMPS.

(3) Use LAMMPS as a library called by another code. In this case the other code is the driver and calls
LAMMPS as needed. Or a wrapper code could link and call both LAMMPS and another code as libraries.
Again, the run command has options that allow it to be invoked with minimal overhead (no setup or clean-up)
if you wish to do multiple short runs, driven by another program.

Examples of driver codes that call LAMMPS as a library are included in the "couple" directory of the
LAMMPS distribution; see couple/README for more details:

® simple: simple driver programs in C++ and C which invoke LAMMPS as a library

¢ lammps_quest: coupling of LAMMPS and Quest, to run classical MD with quantum forces calculated
by a density functional code

e lammps_spparks: coupling of LAMMPS and SPPARKS, to couple a kinetic Monte Carlo model for
grain growth using MD to calculate strain induced across grain boundaries

This section of the documentation describes how to build LAMMPS as a library. Once this is done, you can
interface with LAMMPS either via C++, C, Fortran, or Python (or any other language that supports a vanilla
C-like interface). For example, from C++ you could create one (or more) "instances" of LAMMPS, pass it an
input script to process, or execute individual commands, all by invoking the correct class methods in
LAMMPS. From C or Fortran you can make function calls to do the same things. See Section python of the
manual for a description of the Python wrapper provided with LAMMPS that operates through the LAMMPS
library interface.

The files src/library.cpp and library.h contain the C-style interface to LAMMPS. See Section howto 19 of the
manual for a description of the interface and how to extend it for your needs.

Note that the lammps_open() function that creates an instance of LAMMPS takes an MPI communicator as an
argument. This means that instance of LAMMPS will run on the set of processors in the communicator. Thus
the calling code can run LAMMPS on all or a subset of processors. For example, a wrapper script might
decide to alternate between LAMMPS and another code, allowing them both to run on all the processors. Or it
might allocate half the processors to LAMMPS and half to the other code and run both codes simultaneously
before syncing them up periodically. Or it might instantiate multiple instances of LAMMPS to perform

6.10 Coupling LAMMPS to other codes 105

http://www.rpi.edu/~anderk5/lab
http://dft.sandia.gov/Quest
http://www.sandia.gov/~sjplimp/spparks.html

LIGGGHTS Users Manual

different calculations.

6.11 Visualizing LAMMPS snapshots

LAMMPS itself does not do visualization, but snapshots from LAMMPS simulations can be visualized (and
analyzed) in a variety of ways.

LAMMPS snapshots are created by the dump command which can create files in several formats. The native
LAMMPS dump format is a text file (see "dump atom" or "dump custom") which can be visualized by the
xmovie program, included with the LAMMPS package. This produces simple, fast 2d projections of 3d
systems, and can be useful for rapid debugging of simulation geometry and atom trajectories.

Several programs included with LAMMPS as auxiliary tools can convert native LAMMPS dump files to other
formats. See the Section tools doc page for details. The first is the ch2lmp tool, which contains a
lammps2pdb Perl script which converts LAMMPS dump files into PDB files. The second is the Imp2arc tool
which converts LAMMPS dump files into Accelrys' Insight MD program files. The third is the Imp2cfg tool
which converts LAMMPS dump files into CFG files which can be read into the AtomEye visualizer.

A Python-based toolkit distributed by our group can read native LAMMPS dump files, including custom
dump files with additional columns of user-specified atom information, and convert them to various formats
or pipe them into visualization software directly. See the Pizza.py WWW site for details. Specifically,
Pizza.py can convert LAMMPS dump files into PDB, XYZ, Ensight, and VTK formats. Pizza.py can pipe
LAMMPS dump files directly into the Raster3d and RasMol visualization programs. Pizza.py has tools that
do interactive 3d OpenGL visualization and one that creates SVG images of dump file snapshots.

LAMMPS can create XYZ files directly (via "dump xyz") which is a simple text-based file format used by
many visualization programs including VMD.

LAMMPS can create DCD files directly (via "dump dcd") which can be read by YVMD in conjunction with a
CHARMM PSF file. Using this form of output avoids the need to convert LAMMPS snapshots to PDB files.
See the dump command for more information on DCD files.

LAMMPS can create XTC files directly (via "dump xtc") which is GROMACS file format which can also be
read by VMD for visualization. See the dump command for more information on XTC files.

6.12 Triclinic (non-orthogonal) simulation boxes

By default, LAMMPS uses an orthogonal simulation box to encompass the particles. The boundary command
sets the boundary conditions of the box (periodic, non-periodic, etc). The orthogonal box has its "origin" at
(xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by a = (xhi-xl0,0,0); b =
(0,yhi-ylo,0); ¢ = (0,0,zhi-zlo). The 6 parameters (xlo,xhi,ylo,yhi,zlo,zhi) are defined at the time the
simulation box is created, e.g. by the create box or read data or read restart commands. Additionally,
LAMMPS defines box size parameters 1x,ly,1z where 1x = xhi-xlo, and similarly in the y and z dimensions.
The 6 parameters, as well as 1x,ly,lz, can be output via the thermo style custom command.

LAMMPS also allows simulations to be performed in triclinic (non-orthogonal) simulation boxes shaped as a
parallelepiped with triclinic symmetry. The parallelepiped has its "origin" at (xlo,ylo,zlo) and is defined by 3
edge vectors starting from the origin given by a = (xhi-x10,0,0); b = (xy,yhi-ylo,0); ¢ = (xz,yz,zhi-zlo).
xy,xz,yz can be 0.0 or positive or negative values and are called "tilt factors" because they are the amount of
displacement applied to faces of an originally orthogonal box to transform it into the parallelepiped. In
LAMMPS the triclinic simulation box edge vectors a, b, and ¢ cannot be arbitrary vectors. As indicated, a
must lie on the positive x axis. b must lie in the xy plane, with strictly positive y component. ¢ may have any

6.11 Visualizing LAMMPS snapshots 106

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.sandia.gov/~sjplimp/pizza.html
http://www.ensight.com
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

LIGGGHTS Users Manual

orientation with strictly positive z component. The requirement that a, b, and ¢ have strictly positive x, y, and
z components, respectively, ensures that a, b, and ¢ form a complete right-handed basis. These restrictions
impose no loss of generality, since it is possible to rotate/invert any set of 3 crystal basis vectors so that they

conform to the restrictions.

For example, assume that the 3 vectors A,B,C are the edge vectors of a general parallelepiped, where there is
no restriction on A,B,C other than they form a complete right-handed basis i.e. A x B . C > 0. The equivalent

LAMMPS a,b,c are a linear rotation of A, B, and C and can be computed as follows:

a. 0. e
(a b c) = 0 b; ¢
0 0 e,

o
I
v
>
[
oy
2

“:EQ"‘
|
>
X
@
[
™
E‘.
-2
[
=
T
|
S

e = |@ilAx B = G —pt—er

where A = |Al indicates the scalar length of A. The * hat symbol indicates the corresponding unit vector. beta

and gamma are angles between the vectors described below. Note that by construction, a, b, and ¢ have

strictly positive x, y, and z components, respectively. If it should happen that A, B, and C form a left-handed
basis, then the above equations are not valid for ¢. In this case, it is necessary to first apply an inversion. This

can be achieved by interchanging two basis vectors or by changing the sign of one of them.

For consistency, the same rotation/inversion applied to the basis vectors must also be applied to atom

positions, velocities, and any other vector quantities. This can be conveniently achieved by first converting to

fractional coordinates in the old basis and then converting to distance coordinates in the new basis. The
transformation is given by the following equation:

6.12 Triclinic (non-orthogonal) simulation boxes

107

LIGGGHTS Users Manual

B xC
CxAl|]-X
AxB

1
V

X

(a b c)-

where V is the volume of the box, X is the original vector quantity and x is the vector in the LAMMPS basis.

There is no requirement that a triclinic box be periodic in any dimension, though it typically should be in at
least the 2nd dimension of the tilt (y in xy) if you want to enforce a shift in periodic boundary conditions
across that boundary. Some commands that work with triclinic boxes, e.g. the fix deform and fix npt
commands, require periodicity or non-shrink-wrap boundary conditions in specific dimensions. See the
command doc pages for details.

The 9 parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) are defined at the time the simluation box is created. This
happens in one of 3 ways. If the create box command is used with a region of style prism, then a triclinic box
is setup. See the region command for details. If the read data command is used to define the simulation box,
and the header of the data file contains a line with the "Xy xz yz" keyword, then a triclinic box is setup. See
the read data command for details. Finally, if the read restart command reads a restart file which was written
from a simulation using a triclinic box, then a triclinic box will be setup for the restarted simulation.

Note that you can define a triclinic box with all 3 tilt factors = 0.0, so that it is initially orthogonal. This is
necessary if the box will become non-orthogonal, e.g. due to the fix npt or fix deform commands.
Alternatively, you can use the change box command to convert a simulation box from orthogonal to triclinic
and vice versa.

As with orthogonal boxes, LAMMPS defines triclinic box size parameters 1x,ly,1z where 1x = xhi-xlo, and
similarly in the y and z dimensions. The 9 parameters, as well as Ix,ly,1z, can be output via the thermo_style
custom command.

To avoid extremely tilted boxes (which would be computationally inefficient), no tilt factor can skew the box
more than half the distance of the parallel box length, which is the 1st dimension in the tilt factor (x for xz).
For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and
5. Similarly, both xz and yz must be between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation,
since if the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25,
... are geometrically all equivalent. If the box tilt exceeds this limit during a dynamics run (e.g. via the fix
deform command), then the box is "flipped" to an equivalent shape with a tilt factor within the bounds, so the
run can continue. See the fix deform doc page for further details.

The one exception to this rule is if the 1st dimension in the tilt factor (x for xy) is non-periodic. In that case,
the limits on the tilt factor are not enforced, since flipping the box in that dimension does not change the atom
positions due to non-periodicity. In this mode, if you tilt the system to extreme angles, the simulation will
simply become inefficient, due to the highly skewed simulation box.

Triclinic crystal structures are often defined using three lattice constants a, b, and ¢, and three angles alpha,
beta and gamma. Note that in this nomenclature, the a, b, and c lattice constants are the scalar lengths of the
edge vectors a, b, and ¢ defined above. The relationship between these 6 quantities (a,b,c,alpha,beta,gamma)
and the LAMMPS box sizes (Ix,ly,lz) = (xhi-xlo,yhi-ylo,zhi-zlo) and tilt factors (xy,xz,yz) is as follows:

6.12 Triclinic (non-orthogonal) simulation boxes 108

LIGGGHTS Users Manual

¥ = ly*+xy?
¢ = 122+ xz° +y7?
Xy * xz + ly * yz

COs&x —

The inverse relationship can be written as follows:

bxc
X7
cosfI = —
c
Xy
C{JE'?’ — —E;—
Be = #
xy = bcosy
xz = ccosf

2 2 2
v = bf—xy
b * ccosa — Xy * Xz
ly
2 2 2 2
Iz = ¢ —xz° —yz

vz =

The values of a, b, ¢, alpha, beta , and gamma can be printed out or accessed by computes using the
thermo_style custom keywords cella, cellb, cellc, cellalpha, cellbeta, cellgamma, respectively.

As discussed on the dump command doc page, when the BOX BOUNDS for a snapshot is written to a dump
file for a triclinic box, an orthogonal bounding box which encloses the triclinic simulation box is output, along
with the 3 tilt factors (xy, xz, yz) of the triclinic box, formatted as follows:

ITEM: BOX BOUNDS xy
xlo_bound xhi_bound
ylo_bound yhi_bound
zlo_bound zhi_bound

Xz yz
Xy
Xz
vz

This bounding box is convenient for many visualization programs and is calculated from the 9 triclinic box
parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) as follows:

xlo_bound = x1lo
xhi_bound = xhi
ylo_bound =

yhi_bound = yhi
zlo_bound = zlo
zhi_bound = zhi

+ MIN(0.0,xy,xz,xy+x2)

+ MAX (0.0, xy,xz,xy+x2)
ylo + MIN(0.0,vyz)

+ MAX(0.0,vyz)

6.12 Triclinic (non-orthogonal) simulation boxes 109

LIGGGHTS Users Manual

These formulas can be inverted if you need to convert the bounding box back into the triclinic box parameters,
e.g. xlo = xlo_bound - MIN(0.0,xy,Xxz,Xy+Xz).

One use of triclinic simulation boxes is to model solid-state crystals with triclinic symmetry. The lattice
command can be used with non-orthogonal basis vectors to define a lattice that will tile a triclinic simulation
box via the create atoms command.

A second use is to run Parinello-Rahman dyanamics via the fix npt command, which will adjust the xy, xz, yz
tilt factors to compensate for off-diagonal components of the pressure tensor. The analalog for an energy
minimization is the fix box/relax command.

A third use is to shear a bulk solid to study the response of the material. The fix deform command can be used
for this purpose. It allows dynamic control of the xy, xz, yz tilt factors as a simulation runs. This is discussed
in the next section on non-equilibrium MD (NEMD) simulations.

6.13 NEMD simulations

Non-equilibrium molecular dynamics or NEMD simulations are typically used to measure a fluid's rheological
properties such as viscosity. In LAMMPS, such simulations can be performed by first setting up a
non-orthogonal simulation box (see the preceding Howto section).

A shear strain can be applied to the simulation box at a desired strain rate by using the fix deform command.
The fix nvt/sllod command can be used to thermostat the sheared fluid and integrate the SLLOD equations of
motion for the system. Fix nvt/sllod uses compute temp/deform to compute a thermal temperature by
subtracting out the streaming velocity of the shearing atoms. The velocity profile or other properties of the
fluid can be monitored via the fix ave/spatial command.

As discussed in the previous section on non-orthogonal simulation boxes, the amount of tilt or skew that can
be applied is limited by LAMMPS for computational efficiency to be 1/2 of the parallel box length. However,
fix deform can continuously strain a box by an arbitrary amount. As discussed in the fix deform command,
when the tilt value reaches a limit, the box is flipped to the opposite limit which is an equivalent tiling of
periodic space. The strain rate can then continue to change as before. In a long NEMD simulation these box
re-shaping events may occur many times.

In a NEMD simulation, the "remap" option of fix deform should be set to "remap v", since that is what fix
nvt/sllod assumes to generate a velocity profile consistent with the applied shear strain rate.

An alternative method for calculating viscosities is provided via the fix viscosity command.

6.14 Extended spherical and aspherical particles

Typical MD models treat atoms or particles as point masses. Sometimes, however, it is desirable to have a
model with finite-size particles such as spheres or aspherical ellipsoids. The difference is that such particles
have a moment of inertia, rotational energy, and angular momentum. Rotation is induced by torque from
interactions with other particles.

LAMMPS has several options for running simulations with these kinds of particles. The following aspects are
discussed in turn:

® atom styles

® pair potentials
® time integration

6.13 NEMD simulations 110

LIGGGHTS Users Manual

e computes, thermodynamics, and dump output
¢ rigid bodies composed of extended particles

Atom styles

There are 2 atom styles that allow for definition of finite-size particles: sphere and ellipsoid. The peri atom
style also treats particles as having a volume, but that is internal to the pair_style peri potentials. The dipole
atom style is most often used in conjunction with finite-size particles.

The sphere style defines particles that are spheriods and each particle can have a unique diameter and mass (or
density). These particles store an angular velocity (omega) and can be acted upon by torque. The "set"
command can be used to modify the diameter and mass of individual particles, after then are created.

The ellipsoid style defines particles that are ellipsoids and thus can be aspherical. Each particle has a shape,
specified by 3 diameters, and mass (or density). These particles store an angular momentum and their
orientation (quaternion), and can be acted upon by torque. They do not store an angular velocity (omega),
which can be in a different direction than angular momentum, rather they compute it as needed. The "set"
command can be used to modify the diameter, orientation, and mass of individual particles, after then are
created. It also has a brief explanation of what quaternions are.

The dipole style does not define extended particles, but is often used in conjunction with spherical particles,
via a command like

atom_style hybrid sphere dipole

This is because when dipoles interact with each other, they induce torques, and a particle must be extended
(i.e. have a moment of inertia) in order to respond and rotate. See the atom_style dipole command for details.
The "set" command can be used to modify the orientation and length of the dipole moment of individual
particles, after then are created.

Note that if one of these atom styles is used (or multiple styles via the atom_style hybrid command), not all
particles in the system are required to be finite-size or aspherical. For example, if the 3 shape parameters are
set to the same value, the particle will be a sphere rather than an ellipsoid. If the 3 shape parameters are all set
to 0.0 or if the diameter is set to 0.0, it will be a point particle. If the length of the dipole moment is set to
zero, the particle will not have a point dipole associated with it. The pair styles used to compute pairwise
interactions will typically compute the correct interaction in these simplified (cheaper) cases. Pair_style
hybrid can be used to insure the correct interactions are computed for the appropriate style of interactions.
Likewise, using groups to partition particles (ellipsoids versus spheres versus point particles) will allow you to
use the appropriate time integrators and temperature computations for each class of particles. See the doc
pages for various commands for details.

Also note that for 2d simulations, finite-size spheres and ellipsoids are still treated as 3d particles, rather than
as circular disks or ellipses. This means they have the same moment of inertia for a 3d extended object. When
their temperature is coomputed, the correct degrees of freedom are used for rotation in a 2d versus 3d system.

Pair potentials

When a system with extended particles is defined, the particles will only rotate and experience torque if the
force field computes such interactions. These are the various pair styles that generate torque:

® pair style gran/histor

e pair style gran/hertzian
® pair style gran/no histor,
e pair_style dipole/cut

® pair style gayberne

6.14 Extended spherical and aspherical particles 111

LIGGGHTS Users Manual

® pair_style resquared
® pair_style lubricate

The granular pair styles are used with spherical particles. The dipole pair style is used with atom_style dipole,
which could be applied to spherical or ellipsoidal particles. The GayBerne and REsquared potentials require
ellipsoidal particles, though they will also work if the 3 shape parameters are the same (a sphere). The
lubrication potential works with spherical particles.

Time integration

There are 3 fixes that perform time integration on extended spherical particles, meaning the integrators update
the rotational orientation and angular velocity or angular momentum of the particles:

e fix nve/sphere
e fix nvt/sphere
e fix npt/sphere

Likewise, there are 3 fixes that perform time integration on ellipsoids as extended aspherical particles:

e fix nve/asphere
e fix nvt/asphere
e fix npt/asphere

The advantage of these fixes is that those which thermostat the particles include the rotational degrees of
freedom in the temperature calculation and thermostatting. Other thermostats can be used with fix nve/sphere
or fix nve/asphere, such as fix langevin or fix temp/berendsen, but those thermostats only operate on the
translational kinetic energy of the extended particles.

Note that for mixtures of point and extended particles, you should only use these integration fixes on groups
which contain extended particles.

Computes, thermodynamics, and dump output

There are 4 computes that calculate the temperature or rotational energy of extended spherical or aspherical
particles (ellipsoids):

e compute temp/sphere

e compute temp/asphere
e compute erotate/sphere
e compute erotate/asphere

These include rotational degrees of freedom in their computation. If you wish the thermodynamic output of
temperature or pressure to use one of these computes (e.g. for a system entirely composed of extended
particles), then the compute can be defined and the thermo modify command used. Note that by default
thermodynamic quantities will be calculated with a temperature that only includes translational degrees of
freedom. See the thermo_style command for details.

The dump custom command can output various attributes of extended particles, including the dipole moment
(mu), the angular velocity (omega), the angular momentum (angmom), the quaternion (quat), and the torque

(tq) on the particle.

Rigid bodies composed of extended particles

The fix rigid command treats a collection of particles as a rigid body, computes its inertia tensor, sums the
total force and torque on the rigid body each timestep due to forces on its constituent particles, and integrates

Pair potentials 112

LIGGGHTS Users Manual

the motion of the rigid body.

If any of the constituent particles of a rigid body are extended particles (spheres or ellipsoids), then their
contribution to the inertia tensor of the body is different than if they were point particles. This means the
rotational dynamics of the rigid body will be different. Thus a model of a dimer is different if the dimer
consists of two point masses versus two extended sphereoids, even if the two particles have the same mass.
Extended particles that experience torque due to their interaction with other particles will also impart that
torque to a rigid body they are part of.

See the "fix rigid" command for example of complex rigid-body models it is possible to define in LAMMPS.

Note that the fix shake command can also be used to treat 2, 3, or 4 particles as a rigid body, but it always
assumes the particles are point masses.

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
There are four basic kinds of LAMMPS output:

¢ Thermodynamic output, which is a list of quantities printed every few timesteps to the screen and
logfile.

¢ Dump files, which contain snapshots of atoms and various per-atom values and are written at a
specified frequency.

¢ Certain fixes can output user-specified quantities to files: fix ave/time for time averaging, fix
ave/spatial for spatial averaging, and fix print for single-line output of yariables. Fix print can also
output to the screen.

® Restart files.

A simulation prints one set of thermodynamic output and (optionally) restart files. It can generate any number
of dump files and fix output files, depending on what dump and fix commands you specify.

As discussed below, LAMMPS gives you a variety of ways to determine what quantities are computed and
printed when the thermodynamics, dump, or fix commands listed above perform output. Throughout this
discussion, note that users can also add their own computes and fixes to LAMMPS which can then generate
values that can then be output with these commands.

The following sub-sections discuss different LAMMPS command related to output and the kind of data they
operate on and produce:

¢ Global/per-atom/local data

¢ Scalar/vector/array data

¢ Thermodynamic output

¢ Dump file output

¢ Fixes that write output files

¢ Computes that process output quantities
¢ Fixes that process output quantities

e Computes that generate values to output
¢ Fixes that generate values to output

e Variables that generate values to output
e Summary table of output options and data flow between commands

Rigid bodies composed of extended particles 113

LIGGGHTS Users Manual

Global/per-atom/local data

Various output-related commands work with three different styles of data: global, per-atom, or local. A global
datum is one or more system-wide values, e.g. the temperature of the system. A per-atom datum is one or
more values per atom, e.g. the kinetic energy of each atom. Local datums are calculated by each processor
based on the atoms it owns, but there may be zero or more per atom, e.g. a list of bond distances.

Scalar/vector/array data

Global, per-atom, and local datums can each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for a "compute” or "fix" or "variable" that generates data will specify both
the style and kind of data it produces, e.g. a per-atom vector.

When a quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID in this case is the ID of a compute. The leading "c_" would be replaced
by "f_" for a fix, or "v_" for a variable:

c_ID entire scalar, vector, or array

c_ID[I] |one element of vector, one column of array

c_ID[I][J] |one element of array

In other words, using one bracket reduces the dimension of the data once (vector -> scalar, array -> vector).
Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar values as
input can typically also process elements of a vector or array.

Thermodynamic output

The frequency and format of thermodynamic output is set by the thermo, thermo_style, and thermo modify
commands. The thermo_style command also specifies what values are calculated and written out. Pre-defined
keywords can be specified (e.g. press, etotal, etc). Three additional kinds of keywords can also be specified
(c_ID, f_ID, v_name), where a compute or fix or variable provides the value to be output. In each case, the
compute, fix, or variable must generate global values for input to the thermo style custom command.

Dump file output

Dump file output is specified by the dump and dump modify commands. There are several pre-defined
formats (dump atom, dump xtc, etc).

There is also a dump custom format where the user specifies what values are output with each atom.
Pre-defined atom attributes can be specified (id, x, fx, etc). Three additional kinds of keywords can also be
specified (c_ID, f_ID, v_name), where a compute or fix or variable provides the values to be output. In each
case, the compute, fix, or variable must generate per-atom values for input to the dump custom command.

There is also a dump local format where the user specifies what local values to output. A pre-defined index
keyword can be specified to enumuerate the local values. Two additional kinds of keywords can also be
specified (c_ID, f_ID), where a compute or fix or variable provides the values to be output. In each case, the
compute or fix must generate local values for input to the dump local command.

Fixes that write output files

Sevarl fixes take various quantities as input and can write output files: fix ave/time, fix ave/spatial, fix
ave/histo, fix ave/correlate, and fix print.

The fix ave/time command enables direct output to a file and/or time-averaging of global scalars or vectors.
The user specifies one or more quantities as input. These can be global compute values, global fix values, or

variables of any style except the atom style which produces per-atom values. Since a variable can refer to

Global/per-atom/local data 114

LIGGGHTS Users Manual

keywords used by the thermo style custom command (like temp or press) and individual per-atom values, a
wide variety of quantities can be time averaged and/or output in this way. If the inputs are one or more scalar
values, then the fix generate a global scalar or vector of output. If the inputs are one or more vector values,
then the fix generates a global vector or array of output. The time-averaged output of this fix can also be used
as input to other output commands.

The fix_ave/spatial command enables direct output to a file of spatial-averaged per-atom quantities like those
output in dump files, within 1d layers of the simulation box. The per-atom quantities can be atom density
(mass or number) or atom attributes such as position, velocity, force. They can also be per-atom quantities
calculated by a compute, by a fix, or by an atom-style variable. The spatial-averaged output of this fix can also
be used as input to other output commands.

The fix_ave/histo command enables direct output to a file of histogrammed quantities, which can be global or
per-atom or local quantities. The histogram output of this fix can also be used as input to other output
commands.

The fix ave/correlate command enables direct output to a file of time-correlated quantities, which can be
global scalars. The correlation matrix output of this fix can also be used as input to other output commands.

The fix print command can generate a line of output written to the screen and log file or to a separate file,
periodically during a running simulation. The line can contain one or more variable values for any style
variable except the atom style). As explained above, variables themselves can contain references to global
values generated by thermodynamic keywords, computes, fixes, or other variables, or to per-atom values for a
specific atom. Thus the fix print command is a means to output a wide variety of quantities separate from
normal thermodynamic or dump file output.

Computes that process output quantities

The compute reduce and compute reduce/region commands take one or more per-atom or local vector
quantities as inputs and "reduce" them (sum, min, max, ave) to scalar quantities. These are produced as output
values which can be used as input to other output commands.

The compute slice command take one or more global vector or array quantities as inputs and extracts a subset
of their values to create a new vector or array. These are produced as output values which can be used as input
to other output commands.

The compute property/atom command takes a list of one or more pre-defined atom attributes (id, x, fx, etc)
and stores the values in a per-atom vector or array. These are produced as output values which can be used as
input to other output commands. The list of atom attributes is the same as for the dump custom command.

The compute property/local command takes a list of one or more pre-defined local attributes (bond info, angle
info, etc) and stores the values in a local vector or array. These are produced as output values which can be
used as input to other output commands.

The compute atom/molecule command takes a list of one or more per-atom quantities (from a compute, fix,
per-atom variable) and sums the quantities on a per-molecule basis. It produces a global vector or array as
output values which can be used as input to other output commands.

Fixes that process output quantities

The fix ave/atom command performs time-averaging of per-atom vectors. The per-atom quantities can be
atom attributes such as position, velocity, force. They can also be per-atom quantities calculated by a
compute, by a fix, or by an atom-style variable. The time-averaged per-atom output of this fix can be used as
input to other output commands.

Fixes that write output files 115

LIGGGHTS Users Manual

The fix_store/state command can archive one or more per-atom attributes at a particular time, so that the old
values can be used in a future calculation or output. The list of atom attributes is the same as for the dump
custom command, including per-atom quantities calculated by a compute, by a fix, or by an atom-style
variable. The output of this fix can be used as input to other output commands.

Computes that generate values to output

Every compute in LAMMPS produces either global or per-atom or local values. The values can be scalars or
vectors or arrays of data. These values can be output using the other commands described in this section. The
doc page for each compute command describes what it produces. Computes that produce per-atom or local
values have the word "atom" or "local" in their style name. Computes without the word "atom" or "local"
produce global values.

Fixes that generate values to output

Some fixes in LAMMPS produces either global or per-atom or local values which can be accessed by other
commands. The values can be scalars or vectors or arrays of data. These values can be output using the other
commands described in this section. The doc page for each fix command tells whether it produces any output
quantities and describes them.

Variables that generate values to output

Every variables defined in an input script generates either a global scalar value or a per-atom vector (only
atom-style variables) when it is accessed. The formulas used to define equal- and atom-style variables can
contain references to the thermodynamic keywords and to global and per-atom data generated by computes,
fixes, and other variables. The values generated by variables can be output using the other commands
described in this section.

Summary table of output options and data flow between commands

This table summarizes the various commands that can be used for generating output from LAMMPS. Each
command produces output data of some kind and/or writes data to a file. Most of the commands can take data
from other commands as input. Thus you can link many of these commands together in pipeline form, where
data produced by one command is used as input to another command and eventually written to the screen or to
a file. Note that to hook two commands together the output and input data types must match, e.g.
global/per-atom/local data and scalar/vector/array data.

Also note that, as described above, when a command takes a scalar as input, that could be an element of a
vector or array. Likewise a vector input could be a column of an array.

Command Input

Output

thermo_style custom

global scalars

screen, log file

dump custom per-atom vectors dump file
dump local local vectors dump file
fix _print global scalar from variable screen, file

rint global scalar from variable screen
computes N/A global/per-atom/local scalar/vector/array
fixes N/A global/per-atom/local scalar/vector/array
variables global scalars, per-atom vectors global scalar, per-atom vector

compute reduce

per-atom/local vectors

global scalar/vector

compute slice

global vectors/arrays

global vector/array

compute property/atom

per-atom vectors

per-atom vector/array

Fixes that process output quantities

116

LIGGGHTS Users Manual

compute property/local [local vectors local vector/array

compute atom/molecule |per-atom vectors global vector/array

fix ave/atom per-atom vectors per-atom vector/array

fix ave/time global scalars/vectors global scalar/vector/array, file
fix ave/spatial per-atom vectors global array, file

fix ave/histo global/per-atom/local scalars and vectors |global array, file

fix ave/correlate global scalars global array, file

fix store/state per-atom vectors per-atom vector/array

6.16 Thermostatting, barostatting, and computing temperature

Thermostatting means controlling the temperature of particles in an MD simulation. Barostatting means
controlling the pressure. Since the pressure includes a kinetic component due to particle velocities, both these
operations require calculation of the temperature. Typically a target temperature (T) and/or pressure (P) is
specified by the user, and the thermostat or barostat attempts to equilibrate the system to the requested T
and/or P.

Temperature is computed as kinetic energy divided by some number of degrees of freedom (and the
Boltzmann constant). Since kinetic energy is a function of particle velocity, there is often a need to distinguish
between a particle's advection velocity (due to some aggregate motiion of particles) and its thermal velocity.
The sum of the two is the particle's total velocity, but the latter is often what is wanted to compute a
temperature.

LAMMPS has several options for computing temperatures, any of which can be used in thermostatting and
barostatting. These compute commands calculate temperature, and the compute pressure command calculates
pressure.

e compute tem

e compute temp/sphere

e compute temp/asphere
e compute temp/com

e compute temp/deform
e compute temp/partial

e compute temp/profile

e compute temp/ram

e compute temp/region

All but the first 3 calculate velocity biases (i.e. advection velocities) that are removed when computing the
thermal temperature. Compute temp/sphere and compute temp/asphere compute kinetic energy for extended
particles that includes rotational degrees of freedom. They both allow, as an extra argument, which is another
temperature compute that subtracts a velocity bias. This allows the translational velocity of extended spherical
or aspherical particles to be adjusted in prescribed ways.

Thermostatting in LAMMPS is performed by fixes, or in one case by a pair style. Four thermostatting fixes
are currently available: Nose-Hoover (nvt), Berendsen, Langevin, and direct rescaling (temp/rescale).
Dissipative particle dynamics (DPD) thermostatting can be invoked via the dpd/tstat pair style:

e fix nvt

e fix nvt/sphere
e fix nvt/asphere
e fix nvt/sllod

Summary table of output options and data flow between commands 117

LIGGGHTS Users Manual

e fix temp/berendsen
e fix langevin

e fix temp/rescale

e pair style dpd/tstat

Fix nvt only thermostats the translational velocity of particles. Fix nvt/sllod also does this, except that it
subtracts out a velocity bias due to a deforming box and integrates the SLLOD equations of motion. See the
NEMD simulations section of this page for further details. Fix nvt/sphere and fix nvt/asphere thermostat not
only translation velocities but also rotational velocities for spherical and aspherical particles.

DPD thermostatting alters pairwise interactions in a manner analagous to the per-particle thermostatting of fix
langevin.

Any of the thermostatting fixes can use temperature computes that remove bias for two purposes: (a)
computing the current temperature to compare to the requested target temperature, and (b) adjusting only the
thermal temperature component of the particle's velocities. See the doc pages for the individual fixes and for
the fix_modify command for instructions on how to assign a temperature compute to a thermostatting fix. For
example, you can apply a thermostat to only the x and z components of velocity by using it in conjunction

with compute temp/partial.

IMPORTANT NOTE: Only the nvt fixes perform time integration, meaning they update the velocities and
positions of particles due to forces and velocities respectively. The other thermostat fixes only adjust
velocities; they do NOT perform time integration updates. Thus they should be used in conjunction with a
constant NVE integration fix such as these:

e fix nve
e fix nve/sphere
e fix nve/asphere

Barostatting in LAMMPS is also performed by fixes. Two barosttating methods are currently available:
Nose-Hoover (npt and nph) and Berendsen:

e fix npt

e fix npt/sphere

e fix npt/asphere

e fix nph

e fix press/berendsen

The fix npt commands include a Nose-Hoover thermostat and barostat. Fix nph is just a Nose/Hoover
barostat; it does no thermostatting. Both fix nph and fix press/bernendsen can be used in conjunction with any
of the thermostatting fixes.

As with the thermostats, fix npt and fix nph only use translational motion of the particles in computing T and
P and performing thermo/barostatting. Fix npt/sphere and fix npt/asphere thermo/barostat using not only
translation velocities but also rotational velocities for spherical and aspherical particles.

All of the barostatting fixes use the compute pressure compute to calculate a current pressure. By default, this
compute is created with a simple compute temp (see the last argument of the compute pressure command),
which is used to calculated the kinetic componenet of the pressure. The barostatting fixes can also use
temperature computes that remove bias for the purpose of computing the kinetic componenet which
contributes to the current pressure. See the doc pages for the individual fixes and for the fix_modify command
for instructions on how to assign a temperature or pressure compute to a barostatting fix.

IMPORTANT NOTE: As with the thermostats, the Nose/Hoover methods (fix npt and fix nph) perform time

6.16 Thermostatting, barostatting, and computing temperature 118

LIGGGHTS Users Manual

integration. Fix press/berendsen does NOT, so it should be used with one of the constant NVE fixes or with
one of the NVT fixes.

Finally, thermodynamic output, which can be setup via the thermo_style command, often includes
temperature and pressure values. As explained on the doc page for the thermo _style command, the default T
and P are setup by the thermo command itself. They are NOT the ones associated with any thermostatting or
barostatting fix you have defined or with any compute that calculates a temperature or pressure. Thus if you
want to view these values of T and P, you need to specify them explicitly via a thermo_style custom
command. Or you can use the thermo_modify command to re-define what temperature or pressure compute is
used for default thermodynamic output.

6.17 Walls
Walls in an MD simulation are typically used to bound particle motion, i.e. to serve as a boundary condition.

Walls in LAMMPS can be of rough (made of particles) or idealized surfaces. Ideal walls can be smooth,
generating forces only in the normal direction, or frictional, generating forces also in the tangential direction.

Rough walls, built of particles, can be created in various ways. The particles themselves can be generated like
any other particle, via the lattice and create atoms commands, or read in via the read data command.

Their motion can be constrained by many different commands, so that they do not move at all, move together
as a group at constant velocity or in response to a net force acting on them, move in a prescribed fashion (e.g.
rotate around a point), etc. Note that if a time integration fix like fix nve or fix nvt is not used with the group
that contains wall particles, their positions and velocities will not be updated.

e fix aveforce - set force on particles to average value, so they move together

o fix setforce - set force on particles to a value, e.g. 0.0

e fix freeze - freeze particles for use as granular walls

¢ fix nve/noforce - advect particles by their velocity, but without force

¢ fix move - prescribe motion of particles by a linear velocity, oscillation, rotation, variable

The fix move command offers the most generality, since the motion of individual particles can be specified
with yariable formula which depends on time and/or the particle position.

For rough walls, it may be useful to turn off pairwise interactions between wall particles via the neigh modify
exclude command.

Rough walls can also be created by specifying frozen particles that do not move and do not interact with
mobile particles, and then tethering other particles to the fixed particles, via a bond. The bonded particles do
interact with other mobile particles.

Idealized walls can be specified via several fix commands. Fix wall/gran creates frictional walls for use with
granular particles; all the other commands create smooth walls.

o fix wall/reflect - reflective flat walls

o fix wall/lj93 - flat walls, with Lennard-Jones 9/3 potential

o fix wall/lj126 - flat walls, with Lennard-Jones 12/6 potential

e fix wall/colloid - flat walls, with pair_style colloid potential

¢ fix wall/harmonic - flat walls, with repulsive harmonic spring potential
¢ fix wall/region - use region surface as wall

e fix wall/gran - flat or curved walls with pair_style granular potential

6.17 Walls 119

LIGGGHTS Users Manual

The [j93, [j126, colloid, and harmonic styles all allow the flat walls to move with a constant velocity, or
oscillate in time. The fix wall/region command offers the most generality, since the region surface is treated as
a wall, and the geometry of the region can be a simple primitive volume (e.g. a sphere, or cube, or plane), or a
complex volume made from the union and intersection of primitive volumes. Regions can also specify a
volume "interior" or "exterior" to the specified primitive shape or union or intersection. Regions can also be
"dynamic" meaning they move with constant velocity, oscillate, or rotate.

The only frictional idealized walls currently in LAMMPS are flat or curved surfaces specified by the fix
wall/gran command. At some point we plan to allow regoin surfaces to be used as frictional walls, as well as
triangulated surfaces.

6.18 Elastic constants

Elastic constants characterize the stiffness of a material. The formal definition is provided by the linear
relation that holds between the stress and strain tensors in the limit of infinitesimal deformation. In tensor
notation, this is expressed as s_ij = C_ijkl * e_kl, where the repeated indices imply summation. s_ij are the
elements of the symmetric stress tensor. e_kl are the elements of the symmetric strain tensor. C_ijkl are the
elements of the fourth rank tensor of elastic constants. In three dimensions, this tensor has 3/°4=81 elements.
Using Voigt notation, the tensor can be written as a 6x6 matrix, where C_ij is now the derivative of s_i w.r.t.
e_j. Because s_i is itself a derivative w.r.t. e_i, it follows that C_ij is also symmetric, with at most 7*6/2 = 21
distinct elements.

At zero temperature, it is easy to estimate these derivatives by deforming the simulation box in one of the six
directions using the change box command and measuring the change in the stress tensor. A general-purpose
script that does this is given in the examples/elastic directory described in this section.

Calculating elastic constants at finite temperature is more challenging, because it is necessary to run a
simulation that perfoms time averages of differential properties. One way to do this is to measure the change
in average stress tensor in an NVT simulations when the cell volume undergoes a finite deformation. In order
to balance the systematic and statistical errors in this method, the magnitude of the deformation must be
chosen judiciously, and care must be taken to fully equilibrate the deformed cell before sampling the stress
tensor. Another approach is to sample the triclinic cell fluctuations that occur in an NPT simulation. This
method can also be slow to converge and requires careful post-processing (Shinoda)

6.19 Library interface to LAMMPS

As described in Section start 4, LAMMPS can be built as a library, so that it can be called by another code,
used in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to LAMMPS that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write
yourself in a C++ application that was invoking LAMMPS directly. The C++ code in the functions illustrates
how to invoke internal LAMMPS operations. Note that LAMMPS classes are defined within a LAMMPS
namespace (LAMMPS_NS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void lammps_open (int, char **, MPI_Comm, void **);
void lammps_close (void *);

void lammps_file(void *, char *);

char *lammps_command (void *, char *);

6.18 Elastic constants 120

LIGGGHTS Users Manual

The lammps_open() function is used to initialize LAMMPS, passing in a list of strings as if they were
command-line arguments when LAMMPS is run in stand-alone mode from the command line, and a MPI
communicator for LAMMPS to run under. It returns a ptr to the LAMMPS object that is created, and which is
used in subsequent library calls. The lammps_open() function can be called multiple times, to create multiple
instances of LAMMPS.

LAMMPS will run on the set of processors in the communicator. This means the calling code can run
LAMMPS on all or a subset of processors. For example, a wrapper script might decide to alternate between
LAMMPS and another code, allowing them both to run on all the processors. Or it might allocate half the
processors to LAMMPS and half to the other code and run both codes simultaneously before syncing them up
periodically. Or it might instantiate multiple instances of LAMMPS to perform different calculations.

The lammps_close() function is used to shut down an instance of LAMMPS and free all its memory.

The lammps_file() and lammps_command() functions are used to pass a file or string to LAMMPS as if it
were an input script or single command in an input script. Thus the calling code can read or generate a series
of LAMMPS commands one line at a time and pass it thru the library interface to setup a problem and then
run it, interleaving the lammps_command() calls with other calls to extract information from LAMMPS,
perform its own operations, or call another code's library.

Other useful functions are also included in library.cpp. For example:

void *lammps_extract_global (void *, char *)

void *lammps_extract_atom(void *, char *)

void *lammps_extract_compute (void *, char *, int, int)

void *lammps_extract_fix(void *, char *, int, int, int, int)
void *lammps_extract_variable(void *, char *, char *)

int lammps_get_natoms (void *)

void lammps_get_coords (void *, double *)

void lammps_put_coords (void *, double *)

These can extract various global or per-atom quantities from LAMMPS as well as values calculated by a
compute, fix, or variable. The "get" and "put" operations can retrieve and reset atom coordinates. See the
library.cpp file and its associated header file library.h for details.

The key idea of the library interface is that you can write any functions you wish to define how your code
talks to LAMMPS and add them to src/library.cpp and src/library.h, as well as to the Python interface. The
routines you add can access or change any LAMMPS data you wish. The couple and python directories have
example C++ and C and Python codes which show how a driver code can link to LAMMPS as a library, run
LAMMPS on a subset of processors, grab data from LAMMPS, change it, and put it back into LAMMPS.

6.20 Calculating thermal conductivity

The thermal conductivity kappa of a material can be measured in at least 3 ways using various options in
LAMMPS. (See this section of the manual for an analogous discussion for viscosity). The thermal
conducitivity tensor kappa is a measure of the propensity of a material to transmit heat energy in a diffusive
manner as given by Fourier's law

J = -kappa grad(T)
where J is the heat flux in units of energy per area per time and grad(T) is the spatial gradient of temperature.

The thermal conductivity thus has units of energy per distance per time per degree K and is often
approximated as an isotropic quantity, i.e. as a scalar.

6.19 Library interface to LAMMPS 121

LIGGGHTS Users Manual

The first method is to setup two thermostatted regions at opposite ends of a simulation box, or one in the
middle and one at the end of a periodic box. By holding the two regions at different temperatures with a
thermostatting fix, the energy added to the hot region should equal the energy subtracted from the cold region
and be proportional to the heat flux moving between the regions. See the paper by Ikeshoji and Hafskjold for
details of this idea. Note that thermostatting fixes such as fix nvt, fix langevin, and fix temp/rescale store the
cumulative energy they add/subtract. Alternatively, the fix heat command can used in place of thermostats on
each of two regions, and the resulting temperatures of the two regions monitored with the "compute
temp/region" command or the temperature profile of the intermediate region monitored with the fix

ave/spatial and compute ke/atom commands.

The second method is to perform a reverse non-equilibrium MD simulation using the fix thermal/conductivity
command which implements the INEMD algorithm of Muller-Plathe. Kinetic energy is swapped between
atoms in two different layers of the simulation box. This induces a temperature gradient between the two
layers which can be monitored with the fix ave/spatial and compute ke/atom commands. The fix tallies the
cumulative energy transfer that it performs. See the fix thermal/conductivity command for details.

The third method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the heat flux to kappa. The heat flux can be calculated from the fluctuations of per-atom
potential and kinetic energies and per-atom stress tensor in a steady-state equilibrated simulation. This is in
contrast to the two preceding non-equilibrium methods, where energy flows continuously between hot and
cold regions of the simulation box.

The compute heat/flux command can calculate the needed heat flux and describes how to implement the
Green_Kubo formalism using additional LAMMPS commands, such as the fix ave/correlate command to
calculate the needed auto-correlation. See the doc page for the compute heat/flux command for an example
input script that calculates the thermal conductivity of solid Ar via the GK formalism.

6.21 Calculating viscosity

The shear viscosity eta of a fluid can be measured in at least 3 ways using various options in LAMMPS. (See
this section of the manual for an analogous discussion for thermal conductivity). Eta is a measure of the
propensity of a fluid to transmit momentum in a direction perpendicular to the direction of velocity or
momentum flow. Alternatively it is the resistance the fluid has to being sheared. It is given by

J = -eta grad(Vstream)

where J is the momentum flux in units of momentum per area per time. and grad(Vstream) is the spatial
gradient of the velocity of the fluid moving in another direction, normal to the area through which the
momentum flows. Viscosity thus has units of pressure-time.

The first method is to perform a non-equlibrium MD (NEMD) simulation by shearing the simulation box via
the fix deform command, and using the fix nvt/sllod command to thermostat the fluid via the SLLOD
equations of motion. The velocity profile setup in the fluid by this procedure can be monitored by the fix
ave/spatial command, which determines grad(Vstream) in the equation above. E.g. the derivative in the
y-direction of the Vx component of fluid motion or grad(Vstream) = dVx/dy. In this case, the Pxy
off-diagonal component of the pressure or stress tensor, as calculated by the compute pressure command, can
also be monitored, which is the J term in the equation above. See this section of the manual for details on
NEMD simulations.

The second method is to perform a reverse non-equilibrium MD simulation using the fix viscosity command
which implements the INEMD algorithm of Muller-Plathe. Momentum in one dimension is swapped between
atoms in two different layers of the simulation box in a different dimension. This induces a velocity gradient
which can be monitored with the fix ave/spatial command. The fix tallies the cummulative momentum

6.20 Calculating thermal conductivity 122

LIGGGHTS Users Manual

transfer that it performs. See the fix viscosity command for details.

The third method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the stress/pressure tensor to eta. This can be done in a steady-state equilibrated simulation
which is in contrast to the two preceding non-equilibrium methods, where momentum flows continuously
through the simulation box.

Here is an example input script that calculates the viscosity of liquid Ar via the GK formalism:

Sample LAMMPS input script for viscosity of ligquid Ar

units real

variable T equal 86.4956

variable V equal vol

variable dt equal 4.0

variable p equal 400 # correlation length
variable s equal 5 # sample interval
variable d equal $p*$s # dump interval

convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K/ Boltzmann

variable atm2Pa equal 101325.0

variable A2m equal 1.0e-10

variable fs2s equal 1.0e-15

variable convert equal ${atm2Pa}*${atm2Pa}*${£fs2s}*${A2m}*S{A2m}*${A2m}

setup problem

dimension 3

boundary P PP

lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
region box block 0 4 0 4 0 4

create_box 1 box

create_atoms 1 box

mass 1 39.948

pair_style 1j/cut 13.0
pair_coeff * * (0.2381 3.405
timestep S${dt}

thermo $d

equilibration and thermalization

velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
run 8000

viscosity calculation, switch to NVE if desired

#unfix NVT
#fix NVE all nve

reset_timestep 0

variable pxy equal pxy
variable pxz equal pxz
variable pyz equal pyz
fix SS all ave/correlate $s S$Sp $d &

V_pxXy V_pxz v_pyz type auto file S0St.dat ave running
variable scale equal S${convert}/ (S{kB}*S$T) *$V*S$s*S{dt}
variable vll equal trap(f_SS[3/)*${scale}
variable v22 equal trap(f_SS[4/)*${scale}
variable v33 equal trap(f_SS[5/)*${scale}

thermo_style custom step temp press v_pxy v_pxz v_pyz v_vll v_v22 v_v33

6.21 Calculating viscosity 123

LIGGGHTS Users Manual

run 100000

variable v equal (v_vll+v_v22+v_v33)/3.0

variable ndens equal count (all)/vol

print "average viscosity: $v [Pa.s/ @ $T K, ${ndens} /A"3"

(Berendsen) Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987).

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(Horn) Horn, Swope, Pitera, Madura, Dick, Hura, and Head-Gordon, J Chem Phys, 120, 9665 (2004).

(Ikeshoji) Ikeshoji and Hafskjold, Molecular Physics, 81, 251-261 (1994).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

(Price) Price and Brooks, J Chem Phys, 121, 10096 (2004).

(Shinoda) Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).

6.21 Calculating viscosity 124

LIGGGHTS Users Manual
Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

1. Introduction

This section provides an overview of what LAMMPS can and can't do, describes what it means for LAMMPS
to be an open-source code, and acknowledges the funding and people who have contributed to LAMMPS over
the years.

1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features

1.4 Open source distribution
1.5 Acknowledgments and citations

1.1 What is LAMMPS

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or
gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using
a variety of force fields and boundary conditions.

For examples of LAMMPS simulations, see the Publications page of the LAMMPS WWW Site.

LAMMPS runs efficiently on single-processor desktop or laptop machines, but is designed for parallel
computers. It will run on any parallel machine that compiles C++ and supports the MPI message-passing
library. This includes distributed- or shared-memory parallel machines and Beowulf-style clusters.

LAMMPS can model systems with only a few particles up to millions or billions. See Section perf for
information on LAMMPS performance and scalability, or the Benchmarks section of the LAMMPS WWW
Site.

LAMMPS is a freely-available open-source code, distributed under the terms of the GNU Public License,
which means you can use or modify the code however you wish. See this section for a brief discussion of the
open-source philosophy.

LAMMPS is designed to be easy to modify or extend with new capabilities, such as new force fields, atom
types, boundary conditions, or diagnostics. See Section modify for more details.

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. See
Section history for more information on different versions. All versions can be downloaded from the
LAMMPS WWW Site.

LAMMPS was originally developed under a US Department of Energy CRADA (Cooperative Research and
Development Agreement) between two DOE labs and 3 companies. It is distributed by Sandia National Labs.
See this section for more information on LAMMPS funding and individuals who have contributed to
LAMMPS.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms,
molecules, or macroscopic particles that interact via short- or long-range forces with a variety of initial and/or
boundary conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of nearby
particles. The lists are optimized for systems with particles that are repulsive at short distances, so that the
local density of particles never becomes too large. On parallel machines, LAMMPS uses
spatial-decomposition techniques to partition the simulation domain into small 3d sub-domains, one of which

1. Introduction 125

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www-unix.mcs.anl.gov/mpi
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.gnu.org/copyleft/gpl.html
http://lammps.sandia.gov
http://www.sandia.gov

LIGGGHTS Users Manual

is assigned to each processor. Processors communicate and store "ghost" atom information for atoms that
border their sub-domain. LAMMPS is most efficient (in a parallel sense) for systems whose particles fill a 3d
rectangular box with roughly uniform density. Papers with technical details of the algorithms used in
LAMMPS are listed in this section.

1.2 LAMMPS features

This section highlights LAMMPS features, with pointers to specific commands which give more details. If
LAMMPS doesn't have your favorite interatomic potential, boundary condition, or atom type, see
Section modify, which describes how you can add it to LAMMPS.

General features

® runs on a single processor or in parallel

¢ distributed-memory message-passing parallelism (MPI)

¢ spatial-decomposition of simulation domain for parallelism

¢ open-source distribution

¢ highly portable C++

¢ optional libraries used: MPI and single-processor FFT

¢ GPU (CUDA and OpenCL) and OpenMP support for many code features

¢ casy to extend with new features and functionality

¢ runs from an input script

¢ syntax for defining and using variables and formulas

¢ syntax for looping over runs and breaking out of loops

¢ run one or multiple simulations simultaneously (in parallel) from one script

¢ build as library, invoke LAMMPS thru library interface or provided Python wrapper

¢ couple with other codes: LAMMPS calls other code, other code calls LAMMPS, umbrella code calls
both

Particle and model types

(atom style command)

® atoms

e coarse-grained particles (e.g. bead-spring polymers)

¢ united-atom polymers or organic molecules

¢ all-atom polymers, organic molecules, proteins, DNA
® metals

¢ granular materials

¢ coarse-grained mesoscale models

¢ finite-size spherical and ellipsoidal particles

¢ finite-size line segment (2d) and triangle (3d) particles
¢ point dipolar particles

¢ rigid collections of particles

¢ hybrid combinations of these

Force fields

(pair style, bond style, angle style, dihedral style, improper style, kspace style commands)

¢ pairwise potentials: Lennard-Jones, Buckingham, Morse, Born-Mayer-Huggins, Yukawa, soft, class 2
(COMPASS), hydrogen bond, tabulated
¢ charged pairwise potentials: Coulombic, point-dipole

1.1 What is LAMMPS 126

LIGGGHTS Users Manual

¢ manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), embedded ion method

(EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, AIREBO, ReaxFF, COMB
e electron force field (eFF, AWPMD)
e coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO
® mesoscopic potentials: granular, Peridynamics, SPH
¢ bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)

e angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, class 2 (COMPASS)

e dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS

e improper potentials: harmonic, cvff, umbrella, class 2 (COMPASS)

¢ polymer potentials: all-atom, united-atom, bead-spring, breakable

e water potentials: TIP3P, TIP4P, SPC

¢ implicit solvent potentials: hydrodynamic lubrication, Debye

e KIM archive of potentials

¢ Jlong-range Coulombics and dispersion: Ewald, Wolf, PPPM (similar to particle-mesh Ewald),
Ewald/N for long-range Lennard-Jones

e force-field compatibility with common CHARMM, AMBER, DREIDING, OPLS, GROMACS,
COMPASS options

¢ handful of GPU-enabled pair styles

¢ hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can be used in one
simulation

e overlaid potentials: superposition of multiple pair potentials

Atom creation

(read data, lattice, create atoms, delete atoms, displace atoms, replicate commands)

¢ read in atom coords from files

e create atoms on one or more lattices (e.g. grain boundaries)
e delete geometric or logical groups of atoms (e.g. voids)

e replicate existing atoms multiple times

e displace atoms

Ensembles, constraints, and boundary conditions
(fix command)

¢ 2d or 3d systems

e orthogonal or non-orthogonal (triclinic symmetry) simulation domains
e constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators

e thermostatting options for groups and geometric regions of atoms

e pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 dimensions
¢ simulation box deformation (tensile and shear)

® harmonic (umbrella) constraint forces

¢ rigid body constraints

e SHAKE bond and angle constraints

® bond breaking, formation, swapping

e walls of various kinds

® non-equilibrium molecular dynamics (NEMD)

e variety of additional boundary conditions and constraints

Integrators

(run, run_style, minimize commands)

Force fields

127

http://openkim.org

LIGGGHTS Users Manual

e velocity-Verlet integrator
¢ Brownian dynamics
¢ rigid body integration
® energy minimization via conjugate gradient or steepest descent relaxation
¢ rRESPA hierarchical timestepping
Diagnostics
e see the various flavors of the fix and compute commands

Output

(dump, restart commands)

¢]og file of thermodynamic info

e text dump files of atom coords, velocities, other per-atom quantities

® binary restart files

e parallel I/O of dump and restart files

® per-atom quantities (energy, stress, centro-symmetry parameter, CNA, etc)
e user-defined system-wide (log file) or per-atom (dump file) calculations

e spatial and time averaging of per-atom quantities

e time averaging of system-wide quantities

¢ atom snapshots in native, XYZ, XTC, DCD, CFG formats

Multi-replica models

nudged elastic band parallel replica dynamics temperature accelerated dynamics parallel tempering

Pre- and post-processing

® Various pre- and post-processing serial tools are packaged with LAMMPS; see these doc pages.

® Qur group has also written and released a separate toolkit called Pizza.py which provides tools for
doing setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in
Python and is available for download from the Pizza.py WWW site.

Specialized features

These are LAMMPS capabilities which you may not think of as typical molecular dynamics options:

e stochastic rotation dynamics (SRD)

e real-time visualization and interactive MD

® atom-to-continuum coupling with finite elements

e coupled rigid body integration via the POEMS library
¢ grand canonical Monte Carlo insertions/deletions

e Direct Simulation Monte Carlo for low-density fluids
e Peridvnamics mesoscale modelin

e targeted and steered molecular dynamics

¢ two-temperature electron model

1.3 LAMMPS non-features

LAMMPS is designed to efficiently compute Newton's equations of motion for a system of interacting
particles. Many of the tools needed to pre- and post-process the data for such simulations are not included in

Integrators 128

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

LIGGGHTS Users Manual
the LAMMPS kernel for several reasons:

e the desire to keep LAMMPS simple
e they are not parallel operations

e other codes already do them

¢ limited development resources

Specifically, LAMMPS itself does not:

e run thru a GUI

¢ build molecular systems

¢ assign force-field coefficients automagically

e perform sophisticated analyses of your MD simulation
e visualize your MD simulation

e plot your output data

A few tools for pre- and post-processing tasks are provided as part of the LAMMPS package; they are
described in this section. However, many people use other codes or write their own tools for these tasks.

As noted above, our group has also written and released a separate toolkit called Pizza.py which addresses
some of the listed bullets. It provides tools for doing setup, analysis, plotting, and visualization for LAMMPS
simulations. Pizza.py is written in Python and is available for download from the Pizza.py WWW site.

LAMMPS requires as input a list of initial atom coordinates and types, molecular topology information, and
force-field coefficients assigned to all atoms and bonds. LAMMPS will not build molecular systems and
assign force-field parameters for you.

For atomic systems LAMMPS provides a create_atoms command which places atoms on solid-state lattices
(fcc, bee, user-defined, etc). Assigning small numbers of force field coefficients can be done via the pair
coeff, bond coeff, angle coeff, etc commands. For molecular systems or more complicated simulation
geometries, users typically use another code as a builder and convert its output to LAMMPS input format, or
write their own code to generate atom coordinate and molecular topology for LAMMPS to read in.

For complicated molecular systems (e.g. a protein), a multitude of topology information and hundreds of
force-field coefficients must typically be specified. We suggest you use a program like CHARMM or
AMBER or other molecular builders to setup such problems and dump its information to a file. You can then
reformat the file as LAMMPS input. Some of the tools in this section can assist in this process.

Similarly, LAMMPS creates output files in a simple format. Most users post-process these files with their
own analysis tools or re-format them for input into other programs, including visualization packages. If you
are convinced you need to compute something on-the-fly as LAMMPS runs, see Section _modify for a
discussion of how you can use the dump and compute and fix commands to print out data of your choosing.
Keep in mind that complicated computations can slow down the molecular dynamics timestepping,
particularly if the computations are not parallel, so it is often better to leave such analysis to post-processing
codes.

A very simple (yet fast) visualizer is provided with the LAMMPS package - see the xmovie tool in this
section. It creates xyz projection views of atomic coordinates and animates them. We find it very useful for
debugging purposes. For high-quality visualization we recommend the following packages:

e VMD

e AtomEye

e PyMol
e Raster3d

1.3 LAMMPS non-features 129

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/vmd
http://mt.seas.upenn.edu/Archive/Graphics/A
http://pymol.sourceforge.net
http://www.bmsc.washington.edu/raster3d/raster3d.html

LIGGGHTS Users Manual

e RasMol
Other features that LAMMPS does not yet (and may never) support are discussed in Section history.

Finally, these are freely-available molecular dynamics codes, most of them parallel, which may be well-suited
to the problems you want to model. They can also be used in conjunction with LAMMPS to perform
complementary modeling tasks.

e CHARMM
e AMBER

e NAMD

e NWCHEM
e DL POLY
e Tinker

CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for modeling biological
molecules. CHARMM and AMBER use atom-decomposition (replicated-data) strategies for parallelism;
NAMD and NWCHEM use spatial-decomposition approaches, similar to LAMMPS. Tinker is a serial code.
DL_POLY includes potentials for a variety of biological and non-biological materials; both a replicated-data
and spatial-decomposition version exist.

1.4 Open source distribution

LAMMPS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted
code that is distributed free-of- charge, under the terms of the GNU Public License (GPL). This is often
referred to as open-source distribution - see www.gnu.org or www.opensource.org for more details. The legal
text of the GPL is in the LICENSE file that is included in the LAMMPS distribution.

Here is a summary of what the GPL means for LAMMPS users:

(1) Anyone is free to use, modify, or extend LAMMPS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of LAMMPS, it must remain open-source, meaning you distribute it
under the terms of the GPL. You should clearly annotate such a code as a derivative version of LAMMPS.

(3) If you release any code that includes LAMMPS source code, then it must also be open-sourced, meaning
you distribute it under the terms of the GPL.

(4) If you give LAMMPS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, these are various ways you can contribute to making LAMMPS better.
You can send email to the developers on any of these items.

¢ Point prospective users to the LAMMPS WWW Site. Mention it in talks or link to it from your
WWW site.

¢ [f you find an error or omission in this manual or on the LAMMPS WWW Site, or have a suggestion
for something to clarify or include, send an email to the developers.

¢ [f you find a bug, Section _errors 2 describes how to report it.

e If you publish a paper using LAMMPS results, send the citation (and any cool pictures or movies if
you like) to add to the Publications, Pictures, and Movies pages of the LAMMPS WWW Site, with
links and attributions back to you.

1.4 Open source distribution 130

http://www.openrasmol.org
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/namd/
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
http://dasher.wustl.edu/tinker
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov

LIGGGHTS Users Manual

¢ Create a new Makefile.machine that can be added to the src/MAKE directory.

¢ The tools sub-directory of the LAMMPS distribution has various stand-alone codes for pre- and
post-processing of LAMMPS data. More details are given in Section_tools. If you write a new tool
that users will find useful, it can be added to the LAMMPS distribution.

e LAMMPS is designed to be easy to extend with new code for features like potentials, boundary
conditions, diagnostic computations, etc. This section gives details. If you add a feature of general
interest, it can be added to the LAMMPS distribution.

® The Benchmark page of the LAMMPS WWW Site lists LAMMPS performance on various platforms.
The files needed to run the benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be added to the page.

® You can send feedback for the User Comments page of the LAMMPS WWW Site. It might be added
to the page. No promises.

® Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

1.5 Acknowledgments and citations

LAMMPS development has been funded by the US Department of Energy (DOE), through its CRADA,
LDRD, ASCI, and Genomes-to-Life programs and its OASCR and OBER offices.

Specifically, work on the latest version was funded in part by the US Department of Energy's Genomics:GTL
program (www.doegenomestolife.org) under the project, "Carbon Sequestration in Synechococcus Sp.: From
Molecular Machines to Hierarchical Modeling".

The following paper describe the basic parallel algorithms used in LAMMPS. If you use LAMMPS results in
your published work, please cite this paper and include a pointer to the LAMMPS WWW Site
(http://lammps.sandia.gov):

S. J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19
(1995).

Other papers describing specific algorithms used in LAMMPS are listed under the Citing LAMMPS link of
the LAMMPS WWW page.

The Publications link on the LAMMPS WWW page lists papers that have cited LAMMPS. If your paper is
not listed there for some reason, feel free to send us the info. If the simulations in your paper produced cool
pictures or animations, we'll be pleased to add them to the Pictures or Movies pages of the LAMMPS WWW
site.

The core group of LAMMPS developers is at Sandia National Labs:

¢ Steve Plimpton, sjplimp at sandia.gov
¢ Aidan Thompson, athomps at sandia.gov
¢ Paul Crozier, pscrozi at sandia.gov

The following folks are responsible for significant contributions to the code, or other aspects of the LAMMPS
development effort. Many of the packages they have written are somewhat unique to LAMMPS and the code
would not be as general-purpose as it is without their expertise and efforts.

¢ Axel Kohlmeyer (Temple U), akohlmey at gmail.com, SVN and Git repositories, indefatigable mail
list responder, USER-CG-CMM and USER-OMP packages

¢ Roy Pollock (LLNL), Ewald and PPPM solvers

¢ Mike Brown (ORNL), brownw at ornl.gov, GPU package

¢ Greg Wagner (Sandia), gjwagne at sandia.gov, MEAM package for MEAM potential

1.5 Acknowledgments and citations 131

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://lammps.sandia.gov
http://lammps.sandia.gov/cite.html
http://lammps.sandia.gov/papers.html
http://lammps.sandia.gov/pictures.html
http://lammps.sandia.gov/movies.html

LIGGGHTS Users Manual

® Mike Parks (Sandia), mlparks at sandia.gov, PERI package for Peridynamics

® Rudra Mukherjee (JPL), Rudranarayan.M.Mukherjee at jpl.nasa.gov, POEMS package for articulated
rigid body motion

® Reese Jones (Sandia) and collaborators, rjones at sandia.gov, USER-ATC package for
atom/continuum coupling

e [lya Valuev (JIHT), valuev at physik.hu-berlin.de, USER-AWPMD package for wave-packet MD

e Christian Trott (U Tech Ilmenau), christian.trott at tu-ilmenau.de, USER-CUDA package

¢ Andres Jaramillo-Botero (Caltech), ajaramil at wag.caltech.edu, USER-EFF package for electron
force field

e Pieter in' t Veld (BASF), pieter.intveld at basf.com, USER-EWALDN package for 1/r*N long-range
solvers

e Christoph Kloss (JKU), Christoph.Kloss at jku.at, USER-LIGGGHTS package for granular models
and granular/fluid coupling

e Metin Aktulga (LBL), hmaktulga at Ibl.gov, USER-REAXC package for C version of ReaxFF

¢ Georg Gunzenmuller (EMI), georg.ganzenmueller at emi.thg.de, USER-SPH package

As discussed in Section history, LAMMPS originated as a cooperative project between DOE labs and
industrial partners. Folks involved in the design and testing of the original version of LAMMPS were the
following:

e John Carpenter (Mayo Clinic, formerly at Cray Research)

¢ Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)
e Steve Lustig (Dupont)

e Jim Belak (LLNL)

1.5 Acknowledgments and citations 132

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

10. Modifying & extending LAMMPS

This section describes how to customize LAMMPS by modifying and extending its source code.

10.1 Atom styles

10.2 Bond. angle. dihedral. improper potentials
10.3 Compute styles

10.4 Dump styles

10.5 Dump custom output options
10.6 Fix styles which include integrators, temperature and pressure control, force constraints, boundary

conditions, diagnostic output, etc

10.7 Input script commands

10.8 Kspace computations

10.9 Minimization styles

10.10 Pairwise potentials

10.11 Region styles

10.12 Thermodynamic output options

10.13 Variable options

10.14 Submitting new features for inclusion in LAMMPS

LAMMPS is designed in a modular fashion so as to be easy to modify and extend with new functionality. In
fact, about 75% of its source code is files added in this fashion.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a
new feature to LAMMPS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of LAMMPS. Information about how to do this is provided
below.

The best way to add a new feature is to find a similar feature in LAMMPS and look at the corresponding
source and header files to figure out what it does. You will need some knowledge of C++ to be able to
understand the hi-level structure of LAMMPS and its class organization, but functions (class methods) that do
actual computations are written in vanilla C-style code and operate on simple C-style data structures (vectors
and arrays).

Most of the new features described in this section require you to write a new C++ derived class (except for
exceptions described below, where you can make small edits to existing files). Creating a new class requires 2
files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain methods to
work as a new option. Depending on how different your new feature is compared to existing features, you can
either derive from the base class itself, or from a derived class that already exists. Enabling LAMMPS to
invoke the new class is as simple as putting the two source files in the src dir and re-building LAMMPS.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new
feature are in the 2 files you write, and thus shouldn't make the rest of LAMMPS more complex or cause
side-effect bugs.

Here is a concrete example. Suppose you write 2 files pair_foo.cpp and pair_foo.h that define a new class
PairFoo that computes pairwise potentials described in the classic 1997 paper by Foo, et al. If you wish to
invoke those potentials in a LAMMPS input script with a command like

pair_style foo 0.1 3.5

then your pair_foo.h file should be structured as follows:

10. Modifying & extending LAMMPS 133

http://lammps.sandia.gov

LIGGGHTS Users Manual

#ifdef PAIR_CLASS
PairStyle (foo,PairFoo)
#else

(class definition for PairFoo)

#endif

where "foo" is the style keyword in the pair_style command, and PairFoo is the class name defined in your
pair_foo.cpp and pair_foo.h files.

When you re-build LAMMPS, your new pairwise potential becomes part of the executable and can be
invoked with a pair_style command like the example above. Arguments like 0.1 and 3.5 can be defined and
processed by your new class.

As illustrated by this pairwise example, many kinds of options are referred to in the LAMMPS documentation
as the "style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public
variables in that file are ones used and set by the derived classes which are also used by the base class.
Sometimes they are also used by the rest of LAMMPS. Virtual functions in the base class header file which
are set = 0 are ones you must define in your new derived class to give it the functionality LAMMPS expects.
Virtual functions that are not set to 0 are functions you can optionally define.

Additionally, new output options can be added directly to the thermo.cpp, dump_custom.cpp, and variable.cpp
files as explained below.

Here are additional guidelines for modifying LAMMPS and adding new functionality:

¢ Think about whether what you want to do would be better as a pre- or post-processing step. Many
computations are more easily and more quickly done that way.

¢ Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a bunch of
data on a single processor and analyze it. You run the risk of seriously degrading the parallel
efficiency.

e If your new feature reads arguments or writes output, make sure you follow the unit conventions
discussed by the units command.

¢ If you add something you think is truly useful and doesn't impact LAMMPS performance when it isn't
used, send an email to the developers. We might be interested in adding it to the LAMMPS
distribution. See further details on this at the bottom of this page.

10.1 Atom styles

Classes that define an atom style are derived from the AtomVec class and managed by the Atom class. The
atom style determines what quantities are associated with an atom. A new atom style can be created if one of
the existing atom styles does not define all the arrays you need to store and communicate with atoms.

Atom_vec_atomic.cpp is a simple example of an atom style.

Here is a brief description of methods you define in your new derived class. See atom_vec.h for details.

init one time setup (optional)
grow re-allocate atom arrays to longer lengths (required)
grow_reset make array pointers in Atom and AtomVec classes consistent (required)

10.1 Atom styles 134

http://lammps.sandia.gov/authors.html

LIGGGHTS Users Manual

copy copy info for one atom to another atom's array locations (required)
pack_comm store an atom's info in a buffer communicated every timestep (required)
pack_comm_vel add velocity info to communication buffer (required)

pack_comm_hybrid store extra info unique to this atom style (optional)

unpack_comm retrieve an atom's info from the buffer (required)

unpack_comm_vel also retrieve velocity info (required)

unpack_comm_hybrid |retreive extra info unique to this atom style (optional)

pack_reverse store an atom's info in a buffer communicating partial forces (required)

pack_reverse_hybrid |store extra info unique to this atom style (optional)

unpack_reverse retrieve an atom's info from the buffer (required)

unpack_reverse_hybrid |[retreive extra info unique to this atom style (optional)

pack_border store an atom's info in a buffer communicated on neighbor re-builds (required)
pack_border_vel add velocity info to buffer (required)

pack_border_hybrid |store extra info unique to this atom style (optional)

unpack_border retrieve an atom's info from the buffer (required)
unpack_border_vel also retrieve velocity info (required)

unpack_border_hybrid |retreive extra info unique to this atom style (optional)
pack_exchange store all an atom's info to migrate to another processor (required)
unpack_exchange retrieve an atom's info from the buffer (required)

size_restart number of restart quantities associated with proc's atoms (required)
pack_restart pack atom quantities into a buffer (required)

unpack_restart unpack atom quantities from a buffer (required)

create_atom create an individual atom of this style (required)

data_atom parse an atom line from the data file (required)

data_atom_hybrid parse additional atom info unique to this atom style (optional)
data_vel parse one line of velocity information from data file (optional)
data_vel_hybrid parse additional velocity data unique to this atom style (optional)
memory_usage tally memory allocated by atom arrays (required)

The constructor of the derived class sets values for several variables that you must set when defining a new
atom style, which are documented in atom_vec.h. New atom arrays are defined in atom.cpp. Search for the
word "customize" and you will find locations you will need to modify.

10.2 Bond, angle, dihedral, improper potentials

Classes that compute molecular interactions are derived from the Bond, Angle, Dihedral, and Improper
classes. New styles can be created to add new potentials to LAMMPS.

Bond_harmonic.cpp is the simplest example of a bond style. Ditto for the harmonic forms of the angle,
dihedral, and improper style commands.

Here is a brief description of common methods you define in your new derived class. See bond.h, angle.h,
dihedral.h, and improper.h for details and specific additional methods.

init check if all coefficients are set, calls init_style (optional)
init_style check if style specific conditions are met (optional)
compute compute the molecular interactions (required)

10.2 Bond, angle, dihedral, improper potentials 135

LIGGGHTS Users Manual

settings apply global settings for all types (optional)

coeff set coefficients for one type (required)

equilibrium_distance [length of bond, used by SHAKE (required, bond only)

equilibrium_angle |opening of angle, used by SHAKE (required, angle only)

write & read_restart |writes/reads coeffs to restart files (required)

single force and energy of a single bond or angle (required, bond or angle only)

memory_usage tally memory allocated by the style (optional)

10.3 Compute styles

Classes that compute scalar and vector quantities like temperature and the pressure tensor, as well as classes
that compute per-atom quantities like kinetic energy and the centro-symmetry parameter are derived from the

Compute class. New styles can be created to add new calculations to LAMMPS.

Compute_temp.cpp is a simple example of computing a scalar temperature. Compute_ke_atom.cpp is a

simple example of computing per-atom kinetic energy.

Here is a brief description of methods you define in your new derived class. See compute.h for details.

init

perform one time setup (required)

init_list

neighbor list setup, if needed (optional)

compute_scalar

compute a scalar quantity (optional)

compute_vector

compute a vector of quantities (optional)

compute_peratom

compute one or more quantities per atom (optional)

compute_local

compute one or more quantities per processor (optional)

pack_comm

pack a buffer with items to communicate (optional)

unpack_comm

unpack the buffer (optional)

pack_reverse

pack a buffer with items to reverse communicate (optional)

unpack_reverse

unpack the buffer (optional)

remove_bias

remove velocity bias from one atom (optional)

remove_bias_all

remove velocity bias from all atoms in group (optional)

restore_bias

restore velocity bias for one atom after remove_bias (optional)

restore_bias_all

same as before, but for all atoms in group (optional)

memory_usage

tally memory usage (optional)

10.4 Dump styles

10.5 Dump custom output options

Classes that dump per-atom info to files are derived from the Dump class. To dump new quantities or in a new
format, a new derived dump class can be added, but it is typically simpler to modify the DumpCustom class

contained in the dump_custom.cpp file.

Dump_atom.cpp is a simple example of a derived dump class.

Here is a brief description of methods you define in your new derived class. See dump.h for details.

10.3 Compute styles

136

LIGGGHTS Users Manual

write_header [write the header section of a snapshot of atoms

count count the number of lines a processor will output

pack pack a proc's output data into a buffer

write_data |write a proc's data to a file
See the dump command and its custom style for a list of keywords for atom information that can already be
dumped by DumpCustom. It includes options to dump per-atom info from Compute classes, so adding a new
derived Compute class is one way to calculate new quantities to dump.

Alternatively, you can add new keywords to the dump custom command. Search for the word "customize" in
dump_custom.cpp to see the half-dozen or so locations where code will need to be added.

10.6 Fix styles

In LAMMPS, a "fix" is any operation that is computed during timestepping that alters some property of the
system. Essentially everything that happens during a simulation besides force computation, neighbor list
construction, and output, is a "fix". This includes time integration (update of coordinates and velocities), force
constraints or boundary conditions (SHAKE or walls), and diagnostics (compute a diffusion coefficient). New
styles can be created to add new options to LAMMPS.

Fix_setforce.cpp is a simple example of setting forces on atoms to prescribed values. There are dozens of fix
options already in LAMMPS; choose one as a template that is similar to what you want to implement.

Here is a brief description of methods you can define in your new derived class. See fix.h for details.

setmask determines when the fix is called during the timestep (required)

1nit initialization before a run (optional)

setup_pre_exchange [called before atom exchange in setup (optional)

setup_pre_force called before force computation in setup (optional)

setup called immediately before the 1st timestep and after forces are computed (optional)
min_setup_pre_force |like setup_pre_force, but for minimizations instead of MD runs (optional)
min_setup like setup, but for minimizations instead of MD runs (optional)
initial_integrate called at very beginning of each timestep (optional)

pre_exchange called before atom exchange on re-neighboring steps (optional)
pre_neighbor called before neighbor list build (optional)

pre_force called after pair & molecular forces are computed (optional)

post_force called after pair & molecular forces are computed and communicated (optional)
final_integrate called at end of each timestep (optional)

end_of_step called at very end of timestep (optional)

write_restart dumps fix info to restart file (optional)

restart uses info from restart file to re-initialize the fix (optional)

grow_arrays allocate memory for atom-based arrays used by fix (optional)
copy_arrays copy atom info when an atom migrates to a new processor (optional)
pack_exchange store atom's data in a buffer (optional)

unpack_exchange retrieve atom's data from a buffer (optional)

pack_restart store atom's data for writing to restart file (optional)

unpack_restart retrieve atom's data from a restart file buffer (optional)

size_restart size of atom's data (optional)

10.5 Dump custom output options 137

LIGGGHTS Users Manual

maxsize_restart max size of atom's data (optional)

setup_pre_force_respa [same as setup_pre_force, but for rRESPA (optional)

initial_integrate_respa [same as initial_integrate, but for rRESPA (optional)

post_integrate_respa |called after the first half integration step is done in rRESPA (optional)

pre_force_respa same as pre_force, but for rRESPA (optional)

post_force_respa same as post_force, but for rRESPA (optional)

final_integrate_respa [same as final_integrate, but for rRESPA (optional)

min_pre_force called after pair & molecular forces are computed in minimizer (optional)

. called after pair & molecular forces are computed and communicated in minmizer
min_post_force

(optional)
min_store store extra data for linesearch based minimization on a LIFO stack (optional)
min_pushstore push the minimization LIFO stack one element down (optional)
min_popstore pop the minimization LIFO stack one element up (optional)
min_clearstore clear minimization LIFO stack (optional)
min_step reset or move forward on line search minimization (optional)
min_dof report number of degrees of freedom added by this fix in minimization (optional)
max_alpha report maximum allowed step size during linesearch minimization (optional)
pack_comm pack a buffer to communicate a per-atom quantity (optional)
unpack_comm unpack a buffer to communicate a per-atom quantity (optional)

pack_reverse_comm |pack a buffer to reverse communicate a per-atom quantity (optional)

unpack_reverse_comm [unpack a buffer to reverse communicate a per-atom quantity (optional)

dof report number of degrees of freedom removed by this fix during MD (optional)
compute_scalar return a global scalar property that the fix computes (optional)

compute_vector return a component of a vector property that the fix computes (optional)
compute_array return a component of an array property that the fix computes (optional)

deform called when the box size is changed (optional)

reset_target called when a change of the target temperature is requested during a run (optional)
reset_dt is called when a change of the time step is requested during a run (optional)
modify_param called when a fix_modify request is executed (optional)

memory_usage report memory used by fix (optional)

thermo compute quantities for thermodynamic output (optional)

Typically, only a small fraction of these methods are defined for a particular fix. Setmask is mandatory, as it
determines when the fix will be invoked during the timestep. Fixes that perform time integration (nve, nvt,
npt) implement initial_integrate() and final_integrate() to perform velocity Verlet updates. Fixes that constrain
forces implement post_force().

Fixes that perform diagnostics typically implement end_of_step(). For an end_of_step fix, one of your fix
arguments must be the variable "nevery" which is used to determine when to call the fix and you must set this
variable in the constructor of your fix. By convention, this is the first argument the fix defines (after the ID,
group-1D, style).

If the fix needs to store information for each atom that persists from timestep to timestep, it can manage that
memory and migrate the info with the atoms as they move from processors to processor by implementing the
grow_arrays, copy_arrays, pack_exchange, and unpack_exchange methods. Similarly, the pack_restart and
unpack_restart methods can be implemented to store information about the fix in restart files. If you wish an
integrator or force constraint fix to work with rRESPA (see the run_style command), the initial_integrate,
post_force_integrate, and final_integrate_respa methods can be implemented. The thermo method enables a
fix to contribute values to thermodynamic output, as printed quantities and/or to be summed to the potential

10.6 Fix styles 138

LIGGGHTS Users Manual

energy of the system.

10.7 Input script commands

New commands can be added to LAMMPS input scripts by adding new classes that have a "command"
method. For example, the create_atoms, read_data, velocity, and run commands are all implemented in this
fashion. When such a command is encountered in the LAMMPS input script, LAMMPS simply creates a class
with the corresponding name, invokes the "command" method of the class, and passes it the arguments from
the input script. The command method can perform whatever operations it wishes on LAMMPS data
structures.

The single method your new class must define is as follows:

command |operations performed by the new command

Of course, the new class can define other methods and variables as needed.

10.8 Kspace computations

Classes that compute long-range Coulombic interactions via K-space representations (Ewald, PPPM) are
derived from the KSpace class. New styles can be created to add new K-space options to LAMMPS.

Ewald.cpp is an example of computing K-space interactions.

Here is a brief description of methods you define in your new derived class. See kspace.h for details.

init initialize the calculation before a run

setup computation before the 1st timestep of a run
compute every-timestep computation

memory_usage [tally of memory usage

10.9 Minimization styles

Classes that perform energy minimization derived from the Min class. New styles can be created to add new
minimization algorithms to LAMMPS.

Min_cg.cpp is an example of conjugate gradient minimization.

Here is a brief description of methods you define in your new derived class. See min.h for details.

init initialize the minimization before a run

run perform the minimization

memory_usage |tally of memory usage

10.10 Pairwise potentials
Classes that compute pairwise interactions are derived from the Pair class. In LAMMPS, pairwise calculation

include manybody potentials such as EAM or Tersoff where particles interact without a static bond topology.
New styles can be created to add new pair potentials to LAMMPS.

10.7 Input script commands 139

LIGGGHTS Users Manual

Pair_lj_cut.cpp is a simple example of a Pair class, though it includes some optional methods to enable its use
with rRESPA.

Here is a brief description of the class methods in pair.h:

compute workhorse routine that computes pairwise interactions

settings reads the input script line with arguments you define

coeff set coefficients for one i,j type pair

init_one perform initialization for one i,j type pair

init_style initialization specific to this pair style

write & read_restart write/read 1,j pair coeffs to restart files

write & read_restart_settings |write/read global settings to restart files

single force and energy of a single pairwise interaction between 2 atoms
compute_inner/middle/outer |versions of compute used by rRESPA

The inner/middle/outer routines are optional.

10.11 Region styles

Classes that define geometric regions are derived from the Region class. Regions are used elsewhere in
LAMMPS to group atoms, delete atoms to create a void, insert atoms in a specified region, etc. New styles
can be created to add new region shapes to LAMMPS.

Region_sphere.cpp is an example of a spherical region.

Here is a brief description of methods you define in your new derived class. See region.h for details.

|match |determine whether a point is in the region

10.12 Thermodynamic output options

There is one class that computes and prints thermodynamic information to the screen and log file; see the file
thermo.cpp.

There are two styles defined in thermo.cpp: "one" and "multi". There is also a flexible "custom" style which
allows the user to explicitly list keywords for quantities to print when thermodynamic info is output. See the
thermo_style command for a list of defined quantities.

The thermo styles (one, multi, etc) are simply lists of keywords. Adding a new style thus only requires
defining a new list of keywords. Search for the word "customize" with references to "thermo style" in
thermo.cpp to see the two locations where code will need to be added.

New keywords can also be added to thermo.cpp to compute new quantities for output. Search for the word
"customize" with references to "keyword" in thermo.cpp to see the several locations where code will need to
be added.

Note that the thermo _style custom command already allows for thermo output of quantities calculated by
fixes, computes, and yvariables. Thus, it may be simpler to compute what you wish via one of those constructs,
than by adding a new keyword to the thermo command.

10.10 Pairwise potentials 140

LIGGGHTS Users Manual
10.13 Variable options

There is one class that computes and stores variable information in LAMMPS; see the file variable.cpp. The
value associated with a variable can be periodically printed to the screen via the print, fix print, or
thermo_style custom commands. Variables of style "equal" can compute complex equations that involve the
following types of arguments:

thermo keywords = ke, vol, atoms, ... other variables = v_a, v_myyvar, ... math functions = div(x,y), mult(x,y),
add(x.,y), ... group functions = mass(group), xcm(group,x), ... atom values = x123, y3, vx34, ... compute
values = c_mytemp0, c_thermo_press3, ...

Adding keywords for the thermo_style custom command (which can then be accessed by variables) was
discussed here on this page.

Adding a new math function of one or two arguments can be done by editing one section of the
Variable::evaulate() method. Search for the word "customize" to find the appropriate location.

Adding a new group function can be done by editing one section of the Variable::evaulate() method. Search
for the word "customize" to find the appropriate location. You may need to add a new method to the Group
class as well (see the group.cpp file).

Accessing a new atom-based vector can be done by editing one section of the Variable::evaulate() method.
Search for the word "customize" to find the appropriate location.

Adding new compute styles (whose calculated values can then be accessed by variables) was discussed here
on this page.

10.14 Submitting new features for inclusion in LAMMPS

We encourage users to submit new features that they add to LAMMPS to the developers, especially if you
think the features will be of interest to other users. If they are broadly useful we may add them as core files to
LAMMPS or as part of a standard package. Else we will add them as a user-contributed package or file.
Examples of user packages are in src sub-directories that start with USER. The USER-MISC package is
simply a collection of (mostly) unrelated single files, which is the simplest way to have your contribution
quickly added to the LAMMPS distribution. You can see a list of the both standard and user packages by
typing "make package" in the LAMMPS src directory.

With user packages and files, all we are really providing (aside from the fame and fortune that accompanies
having your name in the source code and on the Authors page of the LAMMPS WWW site), is a means for
you to distribute your work to the LAMMPS user community and a mechanism for others to easily try out
your new feature. This may help you find bugs or make contact with new collaborators. Note that you're also
implicitly agreeing to support your code which means answer questions, fix bugs, and maintain it if
LAMMPS changes.

The previous sections of this doc page describe how to add new features of various kinds to LAMMPS.
Packages are simply collections of one or more new class files which are invoked as a new "style" within a
LAMMPS input script. If designed correctly, these additions do not require changes to the main core of
LAMMPS; they are simply add-on files. If you think your new feature requires non-trivial changes in core
LAMMPS files, you'll need to communicate with the developers, since we may or may not want to make
those changes. An example of a trivial change is making a parent-class method "virtual" when you derive a
new child class from it.

10.13 Variable options 141

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

LIGGGHTS Users Manual

Here is what you need to do to submit a user package or single file for our consideration. Following these
steps will save time for both you and us. See existing package files for examples.

¢ All source files you provide must compile with the most current version of LAMMPS.

e If your contribution is a single file (actually a *.cpp and *.h file) it can most rapidly be added to the
USER-MISC directory. Send us the one-line entry to add to the USER-MISC/README file in that
dir, along with the 2 source files. You can do this multiple times if you wish to contribute several
individual features.

e If your contribution is several related featues, it is probably best to make it a user package directory
with a name like USER-FOO. In addition to your new files, the directory should contain a README,
and Install.csh file. The README text file should contain your name and contact information and a
brief description of what your new package does. The Install.csh file enables LAMMPS to include
and exclude your package. See other README and Install.sh files in other USER directories as
examples. Send us a tarball of this USER-FOO directory.

® Your new source files need to have the LAMMPS copyright, GPL notice, and your name at the top,
like other LAMMPS source files. They need to create a class that is inside the LAMMPS namespace.
Other than that, your files can do whatever is necessary to implement the new features. They don't
have to be written in the same stylistic format and syntax as other LAMMPS files, though that would
be nice.

¢ Finally, you must also send a documentation file for each new command or style you are adding to
LAMMPS. This will be one file for a single-file feature. For a package, it might be several files.
These are simple text files which we will convert to HTML. They must be in the same format as other
* txt files in the lammps/doc directory for similar commands and styles. The "Restrictions" section of
the doc page should indicate that your command is only available if LAMMPS is built with the
appropriate USER-MISC or USER-FOO package. See other user package doc files for an example of
how to do this. The txt2html tool we use to do the conversion can be downloaded from this site, so
you can perform the HTML conversion yourself to proofread your doc page.

Note that the more clear and self-explanatory you make your doc and README files, the more likely it is that
users will try out your new feature.

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Potentials, 75, 345 (1997).

10.14 Submitting new features for inclusion in LAMMPS 142

http://www.sandia.gov/~sjplimp/download.html

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

4. Packages

This section gives a quick overview of the add-on packages that extend LAMMPS functionality.

4.1 Standard packages
4.2 User packages

LAMMPS includes many optional packages, which are groups of files that enable a specific set of features.
For example, force fields for molecular systems or granular systems are in packages. You can see the list of

all packages by typing "make package" from within the src directory of the LAMMPS distribution.

See Section_start 3 of the manual for details on how to include/exclude specific packages as part of the
LAMMPS build process, and for more details about the differences between standard packages and user
packages in LAMMPS.

Below, the packages currently availabe in LAMMPS are listed. For standard packages, just a one-line
description is given. For user packages, more details are provided.

4.1 Standard packages

The current list of standard packages is as follows:

Package Description Author(s) Doc page Example | Library
ASPHERE aspherical particles - howto ellipse -
CLASS2 class 2 force fields - pair_style lj/class2 - -
COLLOID colloidal particles - atom_style colloid| colloid -
DIPOLE point dipole particles - M dipole -
dipole/cut
Fast Lubrication Kumar & Bybee & Higdon pair_style
FLD . : - -
Dynamics (D) lubricateU
GPU GPU-enabled potentials| Mike Brown (ORNL) |Section accelerate| gpu lib/gpu
GRANULAR granular systems - >howto pour -
. Smirichinski & Elliot & . . . -
KIM openKIM potentials Tadmor (3) pair_style kim kim lib/kim
long-range Coulombic .
KSPACE - kspace style peptide -
solvers
MANYBODY | many-body potentials - pair_style tersoff | shear -
MEAM modified .EAM Greg Wagner (Sandia) pair_style meam | meam [lib/meam
potential
MC Monte Carlo options - fix_gemc - -
MOLECULE molecular. system force - howto peptide -
fields
OPT optlmlze§ pair Fischer & Richie & Natoli Section accelerate i i
potentials (2) -
PERI Peridynamics models Mike Parks (Sandia) pair_style peri peri -
POEMS coupled re id body Rudra Mukherjee (JPL) fix poems rigid [lib/poems
motion
4. Packages 143

http://lammps.sandia.gov

LIGGGHTS Users Manual

REAX ReaxFF potential Aidan Thompson (Sandia) | pair_style reax reax lib/reax
REPLICA multi-replica methods - howto tad -
SHOCK shock loading methods - fix_msst - -
SRD stochastic rptation i fix srd ord i
dynamics
XTC dumps in XTC format - dump - -

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the

package.

(1) The FLD package was created by Amit Kumar and Michael Bybee from Jonathan Higdon's group at

UIUC.

(2) The OPT package was created by James Fischer (High Performance Technologies), David Richie, and
Vincent Natoli (Stone Ridge Technolgy).

(3) The KIM package was created by Valeriu Smirichinski, Ryan Elliott, and Ellad Tadmor (U Minn).

The "Doc page" column links to either a portion of the Section howto of the manual, or an input script
command implemented as part of the package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input
script that uses the package. E.g. "peptide" refers to the examples/peptide directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it
is built. These are in the lib directory of the distribution. This section of the manual gives details on the 2-step

build process with external libraries.

4.2 User packages

The current list of user-contributed packages is as follows:

Package Description Author(s) Doc page Example Pic/movie | Library
USER-MISC single-file —;5pR MISC/README | USER-MISC/README - - -
contributions
USER-ATC |om-to-continuum Jones & Templeton & fix atc USER/ate atc | liblate
coupling Zimmerman (2)
USER-AWPMD | wave-packet MD Ilya Valuev (JIHT) pair_style awpmd/cut | USER/awpmd - lib/awpn
coarse-graining Axel Kohlmeyer . .
-CG- . -
USER-CG-CMM model (Temple U) pair_style 1j/sdk USER/cg-cmm cg
USER-CUDA NVIDIA GPU Christian Trott (U Tech Section accelerate USER/cuda - lib/cud:
styles Ilmenau)
USER-EFF | electron force field [Andres Jaramillo-Botero\ = o o\ o1e o e USER/eff eff -
(Caltech)
USER-EWALDN| Ewald for 1/R*n | Pieter in' t Veld (BASF) kspace style - - -
USER-OMP OpenMP threaded Axel Kohlmeyer Section accelerate i i i
styles (Temple U) -
USER-REAXC C version of Metin Aktulga (LBNL) pair_style reaxc reax - -
ReaxFF
smoothed particle | Georg Ganzenmuller .
USER-SPH hydrodynamics (EMI) userguide.pdf USER/sph sph -
4.1 Standard packages 144

http://lammps.sandia.gov/pictures.html#atc
http://lammps.sandia.gov/pictures.html#cg
http://lammps.sandia.gov/movies.html#eff
http://lammps.sandia.gov/movies.html#sph

LIGGGHTS Users Manual

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the
package.

(2) The ATC package was created by Reese Jones, Jeremy Templeton, and Jon Zimmerman (Sandia).

The "Doc page" column links to either a portion of the Section howto of the manual, or an input script
command implemented as part of the package, or to additional documentation provided witht he package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input
script that uses the package. E.g. "peptide" refers to the examples/peptide directory. USER/cuda refers to the
examples/USER/cuda directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it
is built. These are in the lib directory of the distribution. This section of the manual gives details on the 2-step

build process with external libraries.

More details on each package, from the USER-blah/README file is given below.

USER-MISC package

The files in this package are a potpourri of (mostly) unrelated features contributed to LAMMPS by users.
Each feature is a single pair of files (*.cpp and *.h).

More information about each feature can be found by reading its doc page in the LAMMPS doc directory. The
doc page which lists all LAMMPS input script commands is as follows:

Section _commands
User-contributed features are listed at the bottom of the fix, compute, pair, etc sections.
The list of features and author of each is given in the src/USER-MISC/README file.

You should contact the author directly if you have specific questions about the feature or its coding.

USER-ATC package

This package implements a "fix atc" command which can be used in a LAMMPS input script. This fix can be
employed to either do concurrent coupling of MD with FE-based physics surrogates or on-the-fly
post-processing of atomic information to continuum fields.

See the doc page for the fix atc command to get started. At the bottom of the doc page are many links to
additional documentation contained in the doc/USER/atc directory.

There are example scripts for using this package in examples/USER/atc.

This package uses an external library in lib/atc which must be compiled before making LAMMPS. See the
lib/atc/README file and the LAMMPS manual for information on building LAMMPS with external
libraries.

The primary people who created this package are Reese Jones (rjones at sandia.gov), Jeremy Templeton
(jatempl at sandia.gov) and Jon Zimmerman (jzimmer at sandia.gov) at Sandia. Contact them directly if you
have questions.

4.2 User packages 145

LIGGGHTS Users Manual
USER-AWPMD package

This package contains a LAMMPS implementation of the Antisymmetrized Wave Packet Molecular
Dynamics (AWPMD) method.

See the doc page for the pair_style awpmd/cut command to get started.

There are example scripts for using this package in examples/USER/awpmd.

This package uses an external library in lib/awpmd which must be compiled before making LAMMPS. See
the lib/awpmd/README file and the LAMMPS manual for information on building LAMMPS with external

libraries.

The person who created this package is Ilya Valuev at the JIHT in Russia (valuev at physik.hu-berlin.de).
Contact him directly if you have questions.

USER-CG-CMM package
This package implements 3 commands which can be used in a LAMMPS input script:

e pair_style 1j/sdk
e pair_style 1j/sdk/coul/long
¢ angle_style sdk

These styles allow coarse grained MD simulations with the parametrization of Shinoda, DeVane, Klein, Mol
Sim, 33, 27 (2007) (SDK), with extensions to simulate ionic liquids, electrolytes, lipids and charged amino
acids.

See the doc pages for these commands for details.
There are example scripts for using this package in examples/USER/cg-cmm.

This is the second generation implementation reducing the the clutter of the previous version. For many
systems with electrostatics, it will be faster to use pair_style hybrid/overlay with lj/sdk and coul/long instead
of the combined lj/sdk/coul/long style. since the number of charged atom types is usually small. For any other
coulomb interactions this is now required. To exploit this property, the use of the kspace_style pppm/cg is
recommended over regular pppm. For all new styles, input file backward compatibility is provided. The old
implementation is still available through appending the /old suffix. These will be discontinued and removed
after the new implementation has been fully validated.

The current version of this package should be considered beta quality. The CG potentials work correctly for
"normal" situations, but have not been testing with all kinds of potential parameters and simulation systems.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-CUDA package

This package provides acceleration of various LAMMPS pair styles, fix styles, compute styles, and
long-range Coulombics via PPPM for NVIDIA GPUs.

See this section of the manual to get started:

Section accelerate

USER-AWPMD package 146

LIGGGHTS Users Manual

There are example scripts for using this package in examples/USER/cuda.

This package uses an external library in lib/cuda which must be compiled before making LAMMPS. See the
lib/cuda/README file and the LAMMPS manual for information on building LAMMPS with external
libraries.

The person who created this package is Christian Trott at the University of Technology Ilmenau, Germany
(christian.trott at tu-ilmenau.de). Contact him directly if you have questions.

USER-EFF package

This package contains a LAMMPS implementation of the electron Force Field (eFF) currently under
development at Caltech, as described in A. Jaramillo-Botero, J. Su, Q. An, and W.A. Goddard III, JCC, 2010.
The eFF potential was first introduced by Su and Goddard, in 2007.

eFF can be viewed as an approximation to QM wave packet dynamics and Fermionic molecular dynamics,
combining the ability of electronic structure methods to describe atomic structure, bonding, and chemistry in
materials, and of plasma methods to describe nonequilibrium dynamics of large systems with a large number
of highly excited electrons. We classify it as a mixed QM-classical approach rather than a conventional force
field method, which introduces QM-based terms (a spin-dependent repulsion term to account for the Pauli
exclusion principle and the electron wavefunction kinetic energy associated with the Heisenberg principle)
that reduce, along with classical electrostatic terms between nuclei and electrons, to the sum of a set of
effective pairwise potentials. This makes eFF uniquely suited to simulate materials over a wide range of
temperatures and pressures where electronically excited and ionized states of matter can occur and coexist.

The necessary customizations to the LAMMPS core are in place to enable the correct handling of explicit
electron properties during minimization and dynamics.

See the doc page for the pair_style eff/cut command to get started.
There are example scripts for using this package in examples/USER/eff.
There are auxiliary tools for using this package in tools/eff.

The person who created this package is Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).
Contact him directly if you have questions.

USER-EWALDN package

This package implements 3 commands which can be used in a LAMMPS input script: pair_style lj/coul,
pair_style buck/coul, and kspace_style ewald/n.

The "kspace_style ewald/n" command is similar to standard Ewald for charges, but also enables the
Lennard-Jones interaction, or any 1/r*N interaction to be of infinite extent, instead of being cutoff. LAMMPS
pair potentials for long-range Coulombic interactions, such as lj/cut/coul/long can be used with ewald/n. The
two new pair_style commands provide the modifications for the short-range LJ and Buckingham interactions
that can also be used with ewald/n.

Two other advantages of kspace_style ewald/n are that

a) it can be used with non-orthogonal (triclinic symmetry) simulation boxes

b) it can include long-range summations not just for Coulombic interactions (1/r), but also for dispersion
interactions (1/r"6) and dipole interactions (1/r"3).

USER-CUDA package 147

LIGGGHTS Users Manual

Neither of these options is currently possible for other kspace styles such as PPPM and ewald.
See the doc pages for these commands for details.

The person who created these files is Pieter in' t Veld while at Sandia. He is now at BASF (pieter.intveld at
basf.com). Contact him directly if you have questions.

USER-OMP package

This package provides OpenMP multi-threading support and other optimizations of various LAMMPS pair
styles, dihedral styles, and fix styles.

See this section of the manual to get started:
Section accelerate

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-REAXC package

This package contains a implementation for LAMMPS of the ReaxFF force field. ReaxFF uses
distance-dependent bond-order functions to represent the contributions of chemical bonding to the potential
energy. It was originally developed by Adri van Duin and the Goddard group at CalTech.

The USER-REAXC version of ReaxFF (pair_style reax/c), implemented in C, should give identical or very
similar results to pair_style reax, which is a ReaxFF implementation on top of a Fortran library, a version of
which library was originally authored by Adri van Duin.

The reax/c version should be somewhat faster and more scalable, particularly with respect to the charge
equilibration calculation. It should also be easier to build and use since there are no complicating issues with
Fortran memory allocation or linking to a Fortran library.

For technical details about this implemention of ReaxFF, see this paper:

Parallel and Scalable Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques, H. M.
Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama, Parallel Computing, in press (2011).

See the doc page for the pair_style reax/c command for details of how to use it in LAMMPS.
The person who created this package is Hasan Metin Aktulga (hmaktulga at 1bl.gov), while at Purdue

University. Contact him directly, or Aidan Thompson at Sandia (athomps at sandia.gov), if you have
questions.

USER-SPH package

This package implements smoothed particle hydrodynamics (SPH) in LAMMPS. Currently, the package has
the following features:

* Tait, ideal gas, Lennard-Jones equation of states, full support for complete (i.e. internal-energy dependent)
equations of state * plain or Monaghans XSPH integration of the equations of motion * density continuity or
density summation to propagate the density field * commands to set internal energy and density of particles
from the input script * output commands to access internal energy and density for dumping and thermo output

USER-EWALDN package 148

LIGGGHTS Users Manual
See the file doc/USER/sph/SPH_LAMMPS_userguide.pdf to get started.
There are example scripts for using this package in examples/USER/sph.
The person who created this package is Georg Ganzenmuller at the Fraunhofer-Institute for High-Speed

Dynamics, Ernst Mach Institute in Germany (georg.ganzenmueller at emi.thg.de). Contact him directly if you
have questions.

USER-SPH package 149

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

8. Performance & scalability

LAMMPS performance on several prototypical benchmarks and machines is discussed on the Benchmarks
page of the LAMMPS WWW Site where CPU timings and parallel efficiencies are listed. Here, the
benchmarks are described briefly and some useful rules of thumb about their performance are highlighted.

These are the 5 benchmark problems:

1. LJ = atomic fluid, Lennard-Jones potential with 2.5 sigma cutoff (55 neighbors per atom), NVE
integration

2. Chain = bead-spring polymer melt of 100-mer chains, FENE bonds and LJ pairwise interactions with
a 27(1/6) sigma cutoff (5 neighbors per atom), NVE integration

3. EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45 neighbors per atom), NVE
integration

4. Chute = granular chute flow, frictional history potential with 1.1 sigma cutoff (7 neighbors per atom),
NVE integration

5. Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force field with a 10 Angstrom LJ
cutoff (440 neighbors per atom), particle-particle particle-mesh (PPPM) for long-range Coulombics,
NPT integration

The input files for running the benchmarks are included in the LAMMPS distribution, as are sample output
files. Each of the 5 problems has 32,000 atoms and runs for 100 timesteps. Each can be run as a serial
benchmarks (on one processor) or in parallel. In parallel, each benchmark can be run as a fixed-size or
scaled-size problem. For fixed-size benchmarking, the same 32K atom problem is run on various numbers of
processors. For scaled-size benchmarking, the model size is increased with the number of processors. E.g. on
8 processors, a 256K-atom problem is run; on 1024 processors, a 32-million atom problem is run, etc.

A useful metric from the benchmarks is the CPU cost per atom per timestep. Since LAMMPS performance
scales roughly linearly with problem size and timesteps, the run time of any problem using the same model
(atom style, force field, cutoff, etc) can then be estimated. For example, on a 1.7 GHz Pentium desktop
machine (Intel icc compiler under Red Hat Linux), the CPU run-time in seconds/atom/timestep for the 5
problems is

Problem:| LJ Chain | EAM | Chute [Rhodopsin
CPU/atom/step:[4.55E-6 [2.18E-6 [9.38E-6 |2.18E-6| 1.11E-4

Ratioto LJ:| 1.0 0.48 2.06 0.48 24.5

The ratios mean that if the atomic LJ system has a normalized cost of 1.0, the bead-spring chains and granular
systems run 2x faster, while the EAM metal and solvated protein models run 2x and 25x slower respectively.
The bulk of these cost differences is due to the expense of computing a particular pairwise force field for a
given number of neighbors per atom.

Performance on a parallel machine can also be predicted from the one-processor timings if the parallel
efficiency can be estimated. The communication bandwidth and latency of a particular parallel machine
affects the efficiency. On most machines LAMMPS will give fixed-size parallel efficiencies on these
benchmarks above 50% so long as the atoms/processor count is a few 100 or greater - i.e. on 64 to 128
processors. Likewise, scaled-size parallel efficiencies will typically be 80% or greater up to very large
processor counts. The benchmark data on the LAMMPS WWW Site gives specific examples on some
different machines, including a run of 3/4 of a billion LJ atoms on 1500 processors that ran at 85% parallel
efficiency.

8. Performance & scalability 150

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

11. Python interface to LAMMPS

This section describes how to build and use LAMMPS via a Python interface.

¢ 11.1 Extending Python with a serial version of LAMMPS

¢ 11.2 Creating a shared MPI library

¢ 11.3 Extending Python with a parallel version of LAMMPS
¢ 11.4 Extending Python with MPI

¢ 11.5 Testing the Python-ILAMMPS interface

¢ 11.6 Using LAMMPS from Python

¢ 11.7 Example Python scripts that use LAMMPS

The LAMMPS distribution includes some Python code in its python directory which wraps the library
interface to LAMMPS. This makes it is possible to run LAMMPS, invoke LAMMPS commands or give it an
input script, extract LAMMPS results, an modify internal LAMMPS variables, either from a Python script or
interactively from a Python prompt.

Python is a powerful scripting and programming language which can be used to wrap software like LAMMPS
and other packages. It can be used to glue multiple pieces of software together, e.g. to run a coupled or
multiscale model. See this section of the manual and the couple directory of the distribution for more ideas
about coupling LAMMPS to other codes. See Section_start 4 about how to build LAMMPS as a library, and
this section for a description of the library interface provided in src/library.cpp and src/library.h and how to
extend it for your needs. As described below, that interface is what is exposed to Python. It is designed to be
easy to add functions to. This has the effect of extending the Python inteface as well. See details below.

By using the Python interface LAMMPS can also be coupled with a GUI or visualization tools that display
graphs or animations in real time as LAMMPS runs. Examples of such scripts are inlcluded in the python
directory.

Two advantages of using Python are how concise the language is and that it can be run interactively, enabling
rapid development and debugging of programs. If you use it to mostly invoke costly operations within
LAMMPS, such as running a simulation for a reasonable number of timesteps, then the overhead cost of
invoking LAMMPS thru Python will be negligible.

Before using LAMMPS from a Python script, the Python on your machine must be "extended" to include an
interface to the LAMMPS library. If your Python script will invoke MPI operations, you will also need to
extend your Python with an interface to MPI itself.

Thus you should first decide how you intend to use LAMMPS from Python. There are 3 options:

(1) Use LAMMPS on a single processor running Python.

(2) Use LAMMPS in parallel, where each processor runs Python, but your Python program does not use MPI.

(3) Use LAMMPS in parallel, where each processor runs Python, and your Python script also makes MPI calls
through a Python/MPI interface.

Note that for (2) and (3) you will not be able to use Python interactively by typing commands and getting a

response. This is because you will have multiple instances of Python running (e.g. on a parallel machine) and
they cannot all read what you type.

11. Python interface to LAMMPS 151

http://lammps.sandia.gov
http://www.python.org

LIGGGHTS Users Manual

Working in mode (1) does not require your machine to have MPI installed. You should extend your Python
with a serial version of LAMMPS and the dummy MPI library provided with LAMMPS. See instructions
below on how to do this.

Working in mode (2) requires your machine to have an MPI library installed, but your Python does not need
to be extended with MPI itself. The MPI library must be a shared library (e.g. a *.so file on Linux) which is
not typically created when MPI is built/installed. See instruction below on how to do this. You should extend
your Python with the a parallel versionn of LAMMPS which will use the shared MPI system library. See
instructions below on how to do this.

Working in mode (3) requires your machine to have MPI installed (as a shared library as in (2)). You must
also extend your Python with a parallel version of LAMMPS (same as in (2)) and with MPI itself, via one of
several available Python/MPI packages. See instructions below on how to do the latter task.

Several of the following sub-sections cover the rest of the Python setup discussion. The next to last
sub-section describes the Python syntax used to invoke LAMMPS. The last sub-section describes example
Python scripts included in the python directory.

Before proceeding, there are 2 items to note.

(1) The provided Python wrapper for LAMMPS uses the amazing and magical (to me) "ctypes" package in
Python, which auto-generates the interface code needed between Python and a set of C interface routines for a
library. Ctypes is part of standard Python for versions 2.5 and later. You can check which version of Python
you have installed, by simply typing "python" at a shell prompt.

(2) Any library wrapped by Python, including LAMMPS, must be built as a shared library (e.g. a *.so file on
Linux and not a *.a file). The python/setup_serial.py and setup.py scripts do this build for LAMMPS itself
(described below). But if you have LAMMPS configured to use additional packages that have their own
libraries, then those libraries must also be shared libraries. E.g. MPI, FFTW, or any of the libraries in
lammps/lib. When you build LAMMPS as a stand-alone code, you are not building shared versions of these
libraries.

The discussion below describes how to create a shared MPI library. I suggest you start by configuing
LAMMPS without packages installed that require any libraries besides MPI. See this section of the manual for
a discussion of LAMMPS packages. E.g. do not use the KSPACE, GPU, MEAM, POEMS, or REAX
packages.

If you are successfully follow the steps belwo to build the Python wrappers and use this version of LAMMPS
through Python, you can then take the next step of adding LAMMPS packages that use additional libraries.
This will require you to build a shared library for that package's library, similar to what is described below for
MPIL. It will also require you to edit the python/setup_serial.py or setup.py scripts to enable Python to access
those libraries when it builds the LAMMPS wrapper.

11.1 Extending Python with a serial version of LAMMPS
From the python directory in the LAMMPS distribution, type
python setup_serial.py build

and then one of these commands:

sudo python setup_serial.py install
python setup_serial.py install --home=~/foo

11.1 Extending Python with a serial version of LAMMPS 152

LIGGGHTS Users Manual

The "build" command should compile all the needed LAMMPS files, including its dummy MPI library. The
first "install" command will put the needed files in your Python's site-packages sub-directory, so that Python
can load them. For example, if you installed Python yourself on a Linux machine, it would typically be
somewhere like /ust/local/lib/python2.5/site-packages. Installing Python packages this way often requires you
to be able to write to the Python directories, which may require root priveleges, hence the "sudo" prefix. If this
is not the case, you can drop the "sudo". If you use the "sudo" prefix and you have installed Python yourself,
you should make sure that root uses the same Python as the one you did the "install" in. E.g. these 2
commands may do the install in different Python versions:

python setup_serial.py install —--home=~/foo
python /usr/local/bin/python/setup_serial.py install —--home=~/foo

Alternatively, you can install the LAMMPS files (or any other Python packages) in your own user space. The
second "install" command does this, where you should replace "foo" with your directory of choice.

If these commands are successful, a lammps.py and _lammps_serial.so file will be put in the appropriate
directory.

11.2 Creating a shared MPI library

A shared library is one that is dynamically loadable, which is what Python requires. On Linux this is a library
file that ends in ".s0", not ".a". Such a shared library is normally not built if you installed MPI yourself, but it
is easy to do. Here is how to do it for MPICH, a popular open-source version of MPI, distributed by Argonne
National Labs. From within the mpich directory, type

./configure --enable-shared
make
make install

You may need to use "sudo make install" in place of the last line. The end result should be the file libmpich.so
in /usr/local/lib.

IMPORTANT NOTE: If the file libmpich.a already exists in your installation directory (e.g. /ust/local/lib),
you will now have both a static and shared MPI library. This will be fine for running LAMMPS from Python
since it only uses the shared library. But if you now try to build LAMMPS by itself as a stand-alone program
(cd lammps/src; make foo) or build other codes that expect to link against libmpich.a, then those builds may
fail if the linker uses libmpich.so instead. If this happens, it means you will need to remove the file
/usr/local/lib/libmich.so before building LAMMPS again as a stand-alone code.

11.3 Extending Python with a parallel version of LAMMPS

From the python directory, type
python setup.py build

and then one of these commands:

sudo python setup.py install
python setup.py install --home=~/foo

The "build" command should compile all the needed LAMMPS C++ files, which will require MPI to be
installed on your system. This means it must find both the header file mpi.h and a shared library file, e.g.
libmpich.so if the MPICH version of MPI is installed. See the preceding section for how to create a shared
library version of MPI if it does not exist. You may need to adjust the "include_dirs" and "library_dirs" and

11.2 Creating a shared MPI library 153

http://www-unix.mcs.anl.gov/mpi

LIGGGHTS Users Manual

"libraries" fields in python/setup.py to insure the Python build finds all the files it needs.

The first "install" command will put the needed files in your Python's site-packages sub-directory, so that
Python can load them. For example, if you installed Python yourself on a Linux machine, it would typically
be somewhere like /usr/local/lib/python2.5/site-packages. Installing Python packages this way often requires
you to be able to write to the Python directories, which may require root priveleges, hence the "sudo" prefix.
If this is not the case, you can drop the "sudo".

Alternatively, you can install the LAMMPS files (or any other Python packages) in your own user space. The
second "install" command does this, where you should replace "foo" with your directory of choice.

If these commands are successful, a lammps.py and _lammps.so file will be put in the appropriate directory.

11.4 Extending Python with MPI

There are several Python packages available that purport to wrap MPI as a library and allow MPI functions to
be called from Python.

These include

e pyMPI

® maroonmpi
e mpi4

e myMPI

* Pypar

All of these except pyMPI work by wrapping the MPI library (which must be available on your system as a
shared library, as discussed above), and exposing (some portion of) its interface to your Python script. This
means they cannot be used interactively in parallel, since they do not address the issue of interactive input to
multiple instances of Python running on different processors. The one exception is pyMPI, which alters the
Python interpreter to address this issue, and (I believe) creates a new alternate executable (in place of python
itself) as a result.

In principle any of these Python/MPI packages should work to invoke both calls to LAMMPS and MPI itself
from a Python script running in parallel. However, when I downloaded and looked at a few of them, their
docuemtation was incomplete and I had trouble with their installation. It's not clear if some of the packages
are still being actively developed and supported.

The one I recommend, since I have successfully used it with LAMMPS, is Pypar. Pypar requires the
ubiquitous Numpy package be installed in your Python. After launching python, type

>>> import numpy

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy
tarball and from its top-level directory, type

python setup.py build
sudo python setup.py install

The "sudo" is only needed if required to copy Numpy files into your Python distribution's site-packages
directory.

To install Pypar (version pypar-2.1.0_66 as of April 2009), unpack it and from its "source" directory, type

11.3 Extending Python with a parallel version of LAMMPS 154

http://pympi.sourceforge.net/
http://code.google.com/p/maroonmpi/
http://code.google.com/p/mpi4py/
http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16
http://datamining.anu.edu.au/~ole/pypar
http://numpy.scipy.org

LIGGGHTS Users Manual

python setup.py build
sudo python setup.py install

Again, the "sudo" is only needed if required to copy PyPar files into your Python distribution's site-packages
directory.

If you have successully installed Pypar, you should be able to run python serially and type
>>> import pypar
without error. You should also be able to run python in parallel on a simple test script

% mpirun -np 4 python test.script

where test.script contains the lines

import pypar
print "Proc %d out of %d procs" $ (pypar.rank(),pypar.size())

and see one line of output for each processor you ran on.

11.5 Testing the Python-LAMMPS interface

Before using LAMMPS in a Python program, one more step is needed. The interface to LAMMPS is via the
Python ctypes package, which loads the shared LAMMPS library via a CDLL() call, which in turn is a
wrapper on the C-library dlopen(). This command is different than a normal Python "import" and needs to be
able to find the LAMMPS shared library, which is either in the Python site-packages directory or in a local
directory you specified in the "python setup.py install" command, as described above.

The simplest way to do this is add a line like this to your .cshrc or other shell start-up file.

setenv LD_LIBRARY_PATH
${LD_LIBRARY_PATH}:/usr/local/lib/python2.5/site-packages

and then execute the shell file to insure the path has been updated. This will extend the path that dlopen() uses
to look for shared libraries.

To test if the serial LAMMPS library has been successfully installed (mode 1 above), launch Python and type

>>> from lammps import lammps
>>> Imp = lammps ()

If you get no errors, you're ready to use serial LAMMPS from Python.

If you built LAMMPS for parallel use (mode 2 or 3 above), launch Python in parallel:
% mpirun -np 4 python test.script

where test.script contains the lines

import pypar

from lammps import lammps

Imp = lammps ()

print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()), lmp
pypar.finalize ()

11.4 Extending Python with MPI 155

LIGGGHTS Users Manual
Again, if you get no errors, you're good to go.
Note that if you left out the "import pypar" line from this script, you would instantiate and ran LAMMPS
independently on each of the P processors specified in the mpirun command. You can test if Pypar is enabling
true parallel Python and LAMMPS by adding a line to the above sequence of commands like Imp.file("in.lj")
to run an input script and see if the LAMMPS run says it ran on P processors or if you get output from P
duplicated 1-processor runs written to the screen. In the latter case, Pypar is not working correctly.
Note that this line:
from lammps import lammps
will import either the serial or parallel version of the LAMMPS library, as wrapped by lammps.py. But if you
installed both via setup_serial.py and setup.py, it will always import the parallel version, since it attempts that
first.
Note that if your Python script imports the Pypar package (as above), so that it can use MPI calls directly, then
Pypar initializes MPI for you. Thus the last line of your Python script should be pypar.finalize(), to insure
MPI is shut down correctly.
Also note that a Python script can be invoked in one of several ways:
% python foo.script % python -i foo.script % foo.script
The last command requires that the first line of the script be something like this:
#!/usr/local/bin/python #!/usr/local/bin/python -i
where the path points to where you have Python installed, and that you have made the script file executable:
% chmod +x foo.script
Without the "-i" flag, Python will exit when the script finishes. With the "-i" flag, you will be left in the

Python interpreter when the script finishes, so you can type subsequent commands. As mentioned above, you
can only run Python interactively when running Python on a single processor, not in parallel.

11.6 Using LAMMPS from Python

The Python interface to LAMMPS consists of a Python "lammps" module, the source code for which is in
python/lammps.py, which creates a "lammps" object, with a set of methods that can be invoked on that object.
The sample Python code below assumes you have first imported the "lammps" module in your Python script
and its settings as follows:

from lammps import lammps

from lammps import LMPINT as INT

from lammps import LMPDOUBLE as DOUBLE
from lammps import LMPIPTR as IPTR

from lammps import LMPDPTR as DPTR

from lammps import LMPDPTRPTR as DPTRPTR

These are the methods defined by the lammps module. If you look at the file src/library.cpp you will see that

they correspond one-to-one with calls you can make to the LAMMPS library from a C++ or C or Fortran
program.

11.5 Testing the Python-LAMMPS interface 156

LIGGGHTS Users Manual

Imp = lammps () # create a LAMMPS object

Ilmp = lammps (list) # ditto, with command-line args, list = ["-echo","screen"]
Imp.close () # destroy a LAMMPS object

Imp.file(file) # run an entire input script, file = "in.13"

lmp.command (cmd) # invoke a single LAMMPS command, cmd = "run 100"

xlo = lmp.extract_global (name,type) # extract a global quantity
name = "boxxlo", "nlocal", etc
type = INT or DOUBLE

coords = lmp.extract_atom(name, type) # extract a per-atom quantity
name = "x", "type", etc
type = IPTR or DPTR or DPTRPTR

4 =

eng = lmp.extract_compute (id, style, type)
v3 = lmp.extract_fix(id, style, type, i, j)

extract value(s) from a compute
extract value(s) from a fix
id = ID of compute or fix
style = 0 = global data

1 = per—atom data

2 local data
type = 0 = scalar

1 = vector

2 = array
i,J = indices of value in global vector or array

HE oS S S e S o % 3 o

extract value(s) from a variable
name = name of variable
group = group ID (ignored for equal-style variable
flag = 0 = equal-style variable
1 = atom-style variable

var = lmp.extract_variable (name, group, flag)

HH= H= H = H

4

natoms = lmp.get_natoms () total # of atoms as int
x = lmp.get_coords() return coords of all atoms in x
lmp.put_coords (x) # set all atom coords via x

4

The creation of a LAMMPS object does not take an MPI communicator as an argument. There should be a
way to do this, so that the LAMMPS instance runs on a subset of processors, if desired, but I don't yet know
how from Pypar. So for now, it runs on MPI_COMM_WORLD, which is all the processors.

The file() and command() methods allow an input script or single commands to be invoked.

The extract_global(), extract_atom(), extract_compute(), extract_fix(), and extract_variable() methods return
values or pointers to data structures internal to LAMMPS.

For extract_global() see the src/library.cpp file for the list of valid names. New names could easily be added.
A double or integer is returned. You need to specify the appropriate data type via the type argument.

For extract_atom(), a pointer to internal LAMMPS atom-based data is returned, which you can use via normal
Python subscripting. See the extract() method in the src/atom.cpp file for a list of valid names. Again, new
names could easily be added. A pointer to a vector of doubles or integers, or a pointer to an array of doubles
(double **) is returned. You need to specify the appropriate data type via the type argument.

For extract_compute() and extract_fix(), the global, per-atom, or local data calulated by the compute or fix
can be accessed. What is returned depends on whether the compute or fix calculates a scalar or vector or
array. For a scalar, a single double value is returned. If the compute or fix calculates a vector or array, a
pointer to the internal LAMMPS data is returned, which you can use via normal Python subscripting. The one
exception is that for a fix that calculates a global vector or array, a single double value from the vector or
array is returned, indexed by I (vector) or I and J (array). I,J are zero-based indices. The 1,J arguments can be

11.6 Using LAMMPS from Python 157

LIGGGHTS Users Manual

left out if not needed. See Section howto 15 of the manual for a discussion of global, per-atom, and local
data, and of scalar, vector, and array data types. See the doc pages for individual computes and fixes for a
description of what they calculate and store.

For extract_variable(), an equal-style or atom-style variable is evaluated and its result returned.

For equal-style variables a single double value is returned and the group argument is ignored. For atom-style
variables, a vector of doubles is returned, one value per atom, which you can use via normal Python
subscripting. The values will be zero for atoms not in the specified group.

The get_natoms() method returns the total number of atoms in the simulation, as an int. Note that
extract_global("natoms") returns the same value, but as a double, which is the way LAMMPS stores it to
allow for systems with more atoms than can be stored in an int (> 2 billion).

The get_coords() method returns an ctypes vector of doubles of length 3*natoms, for the coordinates of all the
atoms in the simulation, ordered by x,y,z and then by atom ID (see code for put_coords() below). The array
can be used via normal Python subscripting. If atom IDs are not consecutively ordered within LAMMPS, a
None is returned as indication of an error.

Note that the data structure get_coords() returns is different from the data structure returned by
extract_atom("x") in four ways. (1) Get_coords() returns a vector which you index as x[i]; extract_atom()
returns an array which you index as x[i][j]. (2) Get_coords() orders the atoms by atom ID while
extract_atom() does not. (3) Get_coords() returns a list of all atoms in the simulation; extract_atoms() returns
just the atoms local to each processor. (4) Finally, the get_coords() data structure is a copy of the atom coords
stored internally in LAMMPS, whereas extract_atom returns an array that points directly to the internal data.
This means you can change values inside LAMMPS from Python by assigning a new values to the
extract_atom() array. To do this with the get_atoms() vector, you need to change values in the vector, then
invoke the put_coords() method.

The put_coords() method takes a vector of coordinates for all atoms in the simulation, assumed to be ordered
by x,y,z and then by atom ID, and uses the values to overwrite the corresponding coordinates for each atom
inside LAMMPS. This requires LAMMPS to have its "map" option enabled; see the atom modify command
for details. If it is not or if atom IDs are not consecutively ordered, no coordinates are reset,

The array of coordinates passed to put_coords() must be a ctypes vector of doubles, allocated and initialized
something like this:

from ctypes import *

natoms = lmp.get_atoms ()

n3 = 3*natoms

x = (c_double*n3) ()

x0 = x coord of atom with ID 1

x1 = y coord of atom with ID 1

x2 = z coord of atom with ID 1

x3 = x coord of atom with ID 2

xn3-1 = z coord of atom with ID natoms

lmp.put_coords (x)

Alternatively, you can just change values in the vector returned by get_coords(), since it is a ctypes vector of
doubles.

As noted above, these Python class methods correspond one-to-one with the functions in the LAMMPS
library interface in src/library.cpp and library.h. This means you can extend the Python wrapper via the
following steps:

11.6 Using LAMMPS from Python 158

LIGGGHTS Users Manual

¢ Add a new interface function to src/library.cpp and src/library.h.

¢ Verify the new function is syntactically correct by building LAMMPS as a library - see Section_start
4 of the manual.

¢ Add a wrapper method in the Python LAMMPS module to python/lammps.py for this interface
function.

® Rebuild the Python wrapper via python/setup_serial.py or python/setup.py.

® You should now be able to invoke the new interface function from a Python script. Isn't ctypes
amazing?

11.7 Example Python scripts that use LAMMPS

These are the Python scripts included as demos in the python/examples directory of the LAMMPS
distribution, to illustrate the kinds of things that are possible when Python wraps LAMMPS. If you create
your own scripts, send them to us and we can include them in the LAMMPS distribution.

trivial.py read/run a LAMMPS input script thru Python

demo.py invoke various LAMMPS library interface routines
simple.py mimic operation of couple/simple/simple.cpp in Python
gui.py GUI go/stop/temperature-slider to control LAMMPS
plot.py real-time temeperature plot with GnuPlot via Pizza.py
viz_tool.py real-time viz via some viz package

vizplotgui_tool.py [combination of viz_tool.py and plot.py and gui.py

For the viz_tool.py and vizplotgui_tool.py commands, replace "tool" with "gl" or "atomeye" or "pymol" or
"vmmd", depending on what visualization package you have installed.

Note that for GL, you need to be able to run the Pizza.py GL tool, which is included in the pizza
sub-directory. See the Pizza.py doc pages for more info:

Note that for AtomEye, you need version 3, and there is a line in the scripts that specifies the path and name
of the executable. See the AtomEye WWW pages here or here for more details:

http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html

The latter link is to AtomEye 3 which has the scriping capability needed by these Python scripts.

Note that for PyMol, you need to have built and installed the open-source version of PyMol in your Python, so
that you can import it from a Python script. See the PyMol WWW pages here or here for more details:

http://www.pymol.org
http://sourceforge.net/scm/?type=svn&group_id=4546

The latter link is to the open-source version.

Note that for VMD, you need a fairly current version (1.8.7 works for me) and there are some lines in the
pizza/vmd.py script for 4 PIZZA variables that have to match the VMD installation on your system.

See the python/README file for instructions on how to run them and the source code for individual scripts
for comments about what they do.

11.7 Example Python scripts that use LAMMPS 159

http://www.sandia.gov/~sjplimp/pizza.html
http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html
http://www.pymol.org
http://sourceforge.net/scm/?type=svn&group_id=4546

LIGGGHTS Users Manual

Here are screenshots of the vizplotgui_tool.py script in action for different visualization package options.
Click to see larger images:

11.7 Example Python scripts that use LAMMPS 160

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

2. Getting Started

This section describes how to build and run LAMMPS, for both new and experienced users.

2.1 What's in the LAMMPS distribution

2.2 Making LAMMPS

2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library

2.6 Running LAMMPS

2.7 Command-line options

2.8 Screen output

2.9 Tips for users of previous versions

2.1 What's in the LAMMPS distribution

When you download LAMMPS you will need to unzip and untar the downloaded file with the following
commands, after placing the file in an appropriate directory.

gunzip lammps*.tar.gz
tar xvf lammps*.tar

This will create a LAMMPS directory containing two files and several sub-directories:

README |text file
LICENSE [the GNU General Public License (GPL)
bench benchmark problems

couple code coupling examples, using LAMMPS as a library

doc documentation

examples [simple test problems

potentials [embedded atom method (EAM) potential files

src source files

tools pre- and post-processing tools

If you download one of the Windows executables from the download page, then you just get a single file:

lmp_windows.exe
Skip to the Running LAMMPS sections for info on how to launch these executables on a Windows box.

The Windows executables for serial or parallel only include certain packages and bug-fixes/upgrades listed on
this page up to a certain date, as stated on the download page. If you want something with more packages or
that is more current, you'll have to download the source tarball and build it yourself from source code using
Microsoft Visual Studio, as described in the next section.

2.2 Making LAMMPS

This section has the following sub-sections:

e Read this first

2. Getting Started 161

http://lammps.sandia.gov
http://lammps.sandia.gov/bug.html

LIGGGHTS Users Manual

e Steps to build a LAMMPS executable

e Common errors that can occur when making LAMMPS
e Additional build tips

e Building for a Mac

e Building for Windows

Read this first:

Building LAMMPS can be non-trivial. You may need to edit a makefile, there are compiler options to
consider, additional libraries can be used (MPI, FFT, JPEG), LAMMPS packages may be included or
excluded, some of these packages use auxiliary libraries which need to be pre-built, etc.

Please read this section carefully. If you are not comfortable with makefiles, or building codes on a Unix
platform, or running an MPI job on your machine, please find a local expert to help you. Many compiling,
linking, and run problems that users have are often not LAMMPS issues - they are peculiar to the user's
system, compilers, libraries, etc. Such questions are better answered by a local expert.

If you have a build problem that you are convinced is a LAMMPS issue (e.g. the compiler complains about a
line of LAMMPS source code), then please post a question to the LAMMPS mail list.

If you succeed in building LAMMPS on a new kind of machine, for which there isn't a similar Makefile for in
the src/MAKE directory, send it to the developers and we can include it in the LAMMPS distribution.

Steps to build a LAMMEPS executable:
Step 0

The src directory contains the C++ source and header files for LAMMPS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for many machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options
you want, you can type a command like:

make linux
or
gmake mac

"non

Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will build LAMMPS more quickly.

If you get no errors and an executable like Imp_linux or Imp_mac is produced, you're done; it's your lucky
day.

Note that by default only a few of LAMMPS optional packages are installed. To build LAMMPS with
optional packages, see this section below.

Step 1

If Step 0 did not work, you will need to create a low-level Makefile for your machine, like Makefile.foo. You
should make a copy of an existing scc/MAKE/Makefile.* as a starting point. The only portions of the file you
need to edit are the first line, the "compiler/linker settings" section, and the "LAMMPS-specific settings"

section.

Step 2

2.2 Making LAMMPS 162

http://lammps.sandia.gov/mail.html

LIGGGHTS Users Manual

Change the first line of src/MAKE/Makefile.foo to list the word "foo" after the "#", and whatever other
options it will set. This is the line you will see if you just type "make".

Step 3

The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including
optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems.
You can also use mpicc which will typically be available if MPI is installed on your system, though you
should check which actual compiler it wraps. Vendor compilers often produce faster code. On boxes with
Intel CPUs, we suggest using the commercial Intel icc compiler, which can be downloaded from Intel's

compiler site.

If building a C++ code on your machine requires additional libraries, then you should list them as part of the
LIB variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. If your compiler
can't create dependency files, then you'll need to create a Makefile.foo patterned after Makefile.storm, which
uses different rules that do not involve dependency files. Note that when you build LAMMPS for the first
time on a new platform, a long list of *.d files will be printed out rapidly. This is not an error; it is the
Makefile doing its normal creation of dependencies.

Step 4

The "system-specific settings" section has several parts. Note that if you change any -D setting in this section,
you should do a full re-compile, after typing "make clean" (which will describe different clean options).

The LMP_INC variable is used to include options that turn on ifdefs within the LAMMPS code. The options
that are currently recogized are:

e -DLAMMPS_GZIP

e -DLAMMPS_JPEG

e -DLAMMPS_MEMALIGN

e -DLAMMPS_XDR

e -DLAMMPS_SMALLBIG

e -DLAMMPS_BIGBIG

e -DLAMMPS_SMALLSMALL
e -DLAMMPS_LONGLONG_TO_LONG
e -DPACK_ARRAY

¢ -DPACK_POINTER

¢ -DPACK_MEMCPY

The read_data and dump commands will read/write gzipped files if you compile with -DLAMMPS_GZIP. It
requires that your Unix support the "popen" command.

If you use -DLAMMPS_JPEG, the dump image command will be able to write out JPEG image files. If not, it
will only be able to write out text-based PPM image files. For JPEG files, you must also link LAMMPS with
a JPEQG library, as described below.

Using -DLAMMPS_MEMALIGN= enables the use of the posix_memalign() call instead of malloc() when
large chunks or memory are allocated by LAMMPS. This can help to make more efficient use of vector
instructions of modern CPUS, since dynamically allocated memory has to be aligned on larger than default
byte boundaries (e.g. 16 bytes instead of 8 bytes on x86 type platforms) for optimal performance.

2.2 Making LAMMPS 163

http://www.intel.com/software/products/noncom
http://www.intel.com/software/products/noncom

LIGGGHTS Users Manual

If you use -DLAMMPS_XDR, the build will include XDR compatibility files for doing particle dumps in
XTC format. This is only necessary if your platform does have its own XDR files available. See the
Restrictions section of the dump command for details.

Use at most one of the -DLAMMPS_SMALLBIG, -DLAMMPS_BIGBIG, -D-DLAMMPS_SMALLSMALL
settings. The default is -DLAMMPS_SMALLBIG. These refer to use of 4-byte (small) vs 8-byte (big)
integers within LAMMPS, as described in src/lmptype.h. The only reason to use the BIGBIG setting is to
enable simulation of huge molecular systems with more than 2 billion atoms. The only reason to use the
SMALLSMALL setting is if your machine does not support 64-bit integers.

The -DLAMMPS_LONGLONG_TO_LONG setting may be needed if your system or MPI version does not
recognize "long long" data types. In this case a "long" data type is likely already 64-bits, in which case this
setting will convert to that data type.

Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY options can make for
faster parallel FFTs (in the PPPM solver) on some platforms. The -DPACK_ARRAY setting is the default.
See the kspace style command for info about PPPM. See Step 6 below for info about building LAMMPS
with an FFT library.

Step 5
The 3 MPI variables are used to specify an MPI library to build LAMMPS with.

If you want LAMMPS to run in parallel, you must have an MPI library installed on your platform. If you use
an MPI-wrapped compiler, such as "mpicc" to build LAMMPS, you should be able to leave these 3 variables
blank; the MPI wrapper knows where to find the needed files. If not, and MPI is installed on your system in
the usual place (under /usr/local), you also may not need to specify these 3 variables. On some large parallel
machines which use "modules" for their compile/link environements, you may simply need to include the
correct module in your build environment. Or the parallel machine may have a vendor-provided MPI which
the compiler has no trouble finding.

Failing this, with these 3 variables you can specify where the mpi.h file (MPI_INC) and the MPI library file
(MPI_PATH) are found and the name of the library file (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH2 or OpenMPI. MPICH can be
downloaded from the Argonne MPI site. OpenMPI can be downloaded from the OpenMPI site. Other MPI
packages should also work. If you are running on a big parallel platform, your system people or the vendor
should have already installed a version of MPI, which is likely to be faster than a self-installed MPICH or
OpenMP], so find out how to build and link with it. If you use MPICH or OpenMPI, you will have to
configure and build it for your platform. The MPI configure script should have compiler options to enable you
to use the same compiler you are using for the LAMMPS build, which can avoid problems that can arise when
linking LAMMPS to the MPI library.

If you just want to run LAMMPS on a single processor, you can use the dummy MPI library provided in
src/STUBS, since you don't need a true MPI library installed on your system. See the
src/MAKE/Makefile.serial file for how to specify the 3 MPI variables in this case. You will also need to build
the STUBS library for your platform before making LAMMPS itself. From the src directory, type "make
stubs", or from the STUBS dir, type "make" and it should create a libmpi.a suitable for linking to LAMMPS.
If this build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp provides a CPU timer function called MPI_Wtime() that calls gettimeofday() . If
your system doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the
ANSI-standard function clock() rolls over after an hour or so, and is therefore insufficient for timing long
LAMMPS simulations.

2.2 Making LAMMPS 164

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org

LIGGGHTS Users Manual
Step 6

The 3 FFT variables allow you to specify an FFT library which LAMMPS uses (for performing 1d FFTs)
when running the particle-particle particle-mesh (PPPM) option for long-range Coulombics via the
kspace style command.

LAMMPS supports various open-source or vendor-supplied FFT libraries for this purpose. If you leave these
3 variables blank, LAMMPS will use the open-source KISS FFT library, which is included in the LAMMPS
distribution. This library is portable to all platforms and for typical LAMMPS simulations is almost as fast as
FFTW or vendor optimized libraries. If you are not including the KSPACE package in your build, you can
also leave the 3 variables blank.

Otherwise, select which kinds of FFTs to use as part of the FFT_INC setting by a switch of the form
-DFFT_XXX. Recommended values for XXX are: MKL, SCSL, FFTW2, and FFTW3. Legacy options are:
INTEL, SGI, ACML, and T3E. For backward compatability, using -DFFT_FFTW will use the FFTW2
library. Using -DFFT_INONE will use the KISS library described above.

You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables, so the compiler and linker can
find the needed FFT header and library files. Note that on some large parallel machines which use "modules"
for their compile/link environements, you may simply need to include the correct module in your build
environment. Or the parallel machine may have a vendor-provided FFT library which the compiler has no
trouble finding.

FFTW is a fast, portable library that should also work on any platform. You can download it from
www_fftw.org. Both the legacy version 2.1.X and the newer 3.X versions are supported as -DFFT_FFTW?2 or
-DFFT_FFTW3. Building FFTW for your box should be as simple as ./configure; make. Note that on some
platforms FFTW?2 has been pre-installed, and uses renamed files indicating the precision it was compiled
with, e.g. sfftw.h, or dfftw.h instead of fftw.h. In this case, you can specify an additional define variable for
FFT_INC called -DFFTW_SIZE, which will select the correct include file. In this case, for FFT_LIB you
must also manually specify the correct library, namely -Isfftw or -1dfftw.

The FFT_INC variable also allows for a -DFFT_SINGLE setting that will use single-precision FFTs with
PPPM, which can speed-up long-range calulations, particularly in parallel or on GPUs. Fourier transform and
related PPPM operations are somewhat insensitive to floating point truncation errors and thus do not always
need to be performed in double precision. Using the -DFFT_SINGLE setting trades off a little accuracy for
reduced memory use and parallel communication costs for transposing 3d FFT data. Note that single precision
FFTs have only been tested with the FFTW3, FFTW2, MKL, and KISS FFT options.

Step 7

The 3 JPG variables allow you to specify a JPEG library which LAMMPS uses when writing out JPEG files
via the dump image command. These can be left blank if you do not use the -DLAMMPS_JPEG switch
discussed above in Step 4, since in that case JPEG output will be disabled.

A standard JPEG library usually goes by the name libjpeg.a and has an associated header file jpeglib.h.
Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH,
and JPG_LIB variables, so that the compiler and linker can find it.

As before, if these header and library files are in the usual place on your machine, you may not need to set
these variables.

Step 8

Note that by default only a few of LAMMPS optional packages are installed. To build LAMMPS with

2.2 Making LAMMPS 165

http://kissfft.sf.net
http://www.fftw.org

LIGGGHTS Users Manual
optional packages, see this section below, before proceeding to Step 9.
Step 9

That's it. Once you have a correct Makefile.foo, you have installed the optional LAMMPS packages you want
to include in your build, and you have pre-built any other needed libraries (e.g. MPI, FFT, package libraries),
all you need to do from the src directory is type something like this:

make foo
or
gmake foo

You should get the executable Imp_foo when the build is complete.

Errors that can occur when making LAMMPS:

IMPORTANT NOTE: If an error occurs when building LAMMPS, the compiler or linker will state very
explicitly what the problem is. The error message should give you a hint as to which of the steps above has
failed, and what you need to do in order to fix it. Building a code with a Makefile is a very logical process.
The compiler and linker need to find the appropriate files and those files need to be compatible with
LAMMPS source files. When a make fails, there is usually a very simple reason, which you or a local expert
will need to fix.

Here are two non-obvious errors that can occur:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their
names, this can be because your machine's native make doesn't support wildcard expansion in a makefile. Try
gmake instead of make. If that doesn't work, try using a -f switch with your make command to use a
pre-generated Makefile.list which explicitly lists all the needed files, e.g.

make makelist
make —-f Makefile.list linux
gmake —-f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build LAMMPS. Note that you should include/exclude any
desired optional packages before using the "make makelist" command.

(2) If you get an error that says something like 'identifier "atoll" is undefined', then your machine does not
support "long long" integers. Try using the -DLAMMPS_LONGLONG_TO_LONG setting described above
in Step 4.

Additional build tips:
(1) Building LAMMPS for multiple platforms.

You can make LAMMPS for multiple platforms from the same src directory. Each target creates its own
object sub-directory called Obj_target where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean-all" or "make clean-foo" will delete *.o0 object files created when LAMMPS is built, for
either all builds or for a particular machine.

(3) Changing the size limits in src/lmptype.h

2.2 Making LAMMPS 166

LIGGGHTS Users Manual

If you are running a very large problem (billions of atoms or more) and get a run-time error about the system
being too big, either on a per-processor basis or in total size, then you may need to change one or more
settings in src/lmptype.h and re-compile LAMMPS.

As the documentation in that file explains, you have basically two choices to make:

e set the data type size of integer atom IDs to 4 or 8 bytes
e set the data type size of integers that store the total system size to 4 or 8 bytes

The default for atom IDs is 4-byte integers since there is a memory and communication cost for 8-byte
integers. Non-molecular problems do not need atom IDs so this does not restrict their size. Molecular
problems (which use IDs to define molecular topology), are limited to about 2 billion atoms (2*31) with
4-byte IDs. With 8-byte IDs they are effectively unlimited in size (263).

The default for total system size quantities (like the number of atoms or timesteps) is 8-byte integers by
default which is effectively unlimited in size (2°63). If your system or MPI implementation does not support
8-byte integers, an error will be generated, and you will need to set "bigint" to 4-byte integers. This restricts
your total system size to about 2 billion atoms or timesteps (2*31).

Note that in src/lmptype.h there are also settings for the MPI data types associated with the integers that store
atom IDs and total system sizes, which need to be set consistent with the associated C data types.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
about 2 billion atoms per processor (2231), which should not normally be a restriction since such a problem
would have a huge per-processor memory footprint due to neighbor lists and would run very slowly in terms
of CPU secs/timestep.

Building for a Mac:

OS X is BSD Unix, so it should just work. See the src/MAKE/Makefile.mac file.

Building for Windows:

The LAMMPS download page has an option to download both a serial and parallel pre-built Windows
exeutable. See the Running LAMMPS section for instructions for running these executables on a Windows
box.

If the pre-built executable doesn't have the options you want, then you can build LAMMPS from its source
files on a Windows box. One way to do this is install and use cygwin to build LAMMPS with a standard
Linus make, just as you would on any Linux box; see src/MAKE/Makefile.cygwin.

There is a also a src/WINDOWS directory that contains project files for Microsoft Visual Studio 2005, which
should also work with later versions of VS. That directory contains a README.txt file which provides
instructions for building LAMMPS from source code using Visual Studio that are hopefully easy to follow for
Windows and VS users.

Four VS project options are provided. The first includes the default packages (MANYBODY, MOLECULE,
and KSPACE). The second includes all standard packages (except GPU, MEAM, and REAX which are not
yet included because they require NVIDIA or Fortran compilation). The third includes all standard packages
(with the exceptions) and some user packages. The included user packages are USER-EFF, USER-CG-CMM,
and USER-REAXC. The fourth project includes the USER-AWPMD package.

2.2 Making LAMMPS 167

LIGGGHTS Users Manual
2.3 Making LAMMPS with optional packages

This section has the following sub-sections:

¢ Package basics

¢ Including/excluding packages
e Packages that require extra libraries

e Additional Makefile settings for extra libraries

Package basics:

The source code for LAMMPS is structured as a set of core files which are always included, plus optional
packages. Packages are groups of files that enable a specific set of features. For example, force fields for
molecular systems or granular systems are in packages. You can see the list of all packages by typing "make
package" from within the src directory of the LAMMPS distribution.

If you use a command in a LAMMPS input script that is specific to a particular package, you must have built
LAMMPS with that package, else you will get an error that the style is invalid or the command is unknown.
Every command's doc page specfies if it is part of a package. You can also type

lmp_machine -h

to run your executable with the optional -h command-line switch for "help", which will list the styles and
commands known to your executable.

There are two kinds of packages in LAMMPS, standard and user packages. More information about the
contents of standard and user packages is given in Section packages of the manual. The difference between
standard and user packages is as follows:

Standard packages are supported by the LAMMPS developers and are written in a syntax and style consistent
with the rest of LAMMPS. This means we will answer questions about them, debug and fix them if necessary,
and keep them compatible with future changes to LAMMPS.

User packages have been contributed by users, and always begin with the user prefix. If they are a single
command (single file), they are typically in the user-misc package. Otherwise, they are a a set of files grouped
together which add a specific functionality to the code.

User packages don't necessarily meet the requirements of the standard packages. If you have problems using a
feature provided in a user package, you will likely need to contact the contributor directly to get help.
Information on how to submit additions you make to LAMMPS as a user-contributed package is given in this
section of the documentation.

Including/excluding packages:

To use or not use a package you must include or exclude it before building LAMMPS. From the src directory,
this is typically as simple as:

make yes-colloid
make gt++

or

make no-manybody
make gt++

2.3 Making LAMMPS with optional packages 168

LIGGGHTS Users Manual

Some packages have individual files that depend on other packages being included. LAMMPS checks for this
and does the right thing. L.e. individual files are only included if their dependencies are already included.
Likewise, if a package is excluded, other files dependent on that package are also excluded.

The reason to exclude packages is if you will never run certain kinds of simulations. For some packages, this
will keep you from having to build auxiliary libraries (see below), and will also produce a smaller executable
which may run a bit faster.

When you download a LAMMPS tarball, these packages are pre-installed in the src directory: KSPACE,
MANYBODY,MOLECULE. When you download LAMMPS source files from the SVN or Git repositories,
no packages are pre-installed.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name
of the package in lower-case, e.g. name = kspace for the KSPACE package or name = user-atc for the

USER-ATC package. You can also type "make yes-standard", "make no-standard", "make yes-user", "make

no-user”, "make yes-all" or "make no-all" to include/exclude various sets of packages. Type "make package"
to see the all of the package-related make options.

IMPORTANT NOTE: Inclusion/exclusion of a package works by simply moving files back and forth between
the main src directory and sub-directories with the package name (e.g. src/KSPACE, src/USER-ATC), so that
the files are seen or not seen when LAMMPS is built. After you have included or excluded a package, you
must re-build LAMMPS.

Additional package-related make options exist to help manage LAMMPS files that exist in both the src
directory and in package sub-directories. You do not normally need to use these commands unless you are
editing LAMMPS files or have downloaded a patch from the LAMMPS WWW site.

Typing "make package-update" will overwrite src files with files from the package sub-directories if the
package has been included. It should be used after a patch is installed, since patches only update the files in
the package sub-directory, but not the src files. Typing "make package-overwrite" will overwrite files in the
package sub-directories with src files.

Typing "make package-status" will show which packages are currently included. Of those that are included, it
will list files that are different in the src directory and package sub-directory. Typing "make package-dift"
lists all differences between these files. Again, type "make package" to see all of the package-related make
options.

Packages that require extra libraries:

A few of the standard and user packages require additional auxiliary libraries to be compiled first. If you get a
LAMMPS build error about a missing library, this is likely the reason. The source code or hooks to these
libraries is included in the LAMMPS distribution under the "lib" directory. Look at the lib/README file for a
list of these or see Section packages of the doc pages.

Each lib directory has a README file (e.g. lib/reax/ README) with instructions on how to build that library.
Typically this is done in this manner:

make —-f Makefile.g++

in the appropriate directory, e.g. in lib/reax. Some of the libraries do not build this way. Some of the
directories do not even have source code for the library, since you are expected to download and build it
separately. Again, see the libary README file for details.

If you are building the library, you will need to use a Makefile that is a match for your system. If one of the
provided Makefiles is not appropriate for your system you will need to edit or add one. For example, in the

2.3 Making LAMMPS with optional packages 169

LIGGGHTS Users Manual

case of Fortran-based libraries, your system must have a Fortran compiler, the settings for which will need to
be listed in the Makefile.

When you have built one of these libraries, there are 2 things to check:

(1) The file libname.a should now exist in lib/name. E.g. lib/reax/libreax.a. This is the library file LAMMPS
will link against. One exception is the lib/cuda library which produces the file liblammpscuda.a, because there
is already a system library libcuda.a.

(2) The file Makefile.lammps should exist in lib/name. E.g. lib/cuda/Makefile.lammps. This file may be
auto-generated by the build of the library, or you may need to make a copy of the appropriate provided file
(e.g. lib/meam/Makefile.lammps.gfortran). Either way you should insure that the settings in this file are
appropriate for your system.

There are typically 3 settings in the Makefile.lammps file (unless some are blank or not needed): a SYSINC,
SYSPATH, and SYSLIB setting, specific to this package. These are settings the LAMMPS build will import
when compiling the LAMMPS package files (not the library files), and linking to the auxiliary library. They
typically list any other system libraries needed to support the package and where to find them. An example is
the BLAS and LAPACK libraries needed by the USER-ATC package. Or the system libraries that support
calling Fortran from C++, as the MEAM and REAX packages do.

(3) One exception to these rules is the lib/linalg directory, which is simply BLAS and LAPACK files used by
the USER-ATC package (and possibly other packages in the future). If you do not have these libraries on your
system, you can use one of the Makefiles in this directory (which you may need to modify) to build a dummy
BLAS and LAPACK library. It can then be included in the lib/atc/Makefile.lammps file as part of the
SYSPATH and SYSLIB lines so that LAMMPS will build properly with the USER-ATC package.

Note that if these settings are not correct for your box, the LAMMPS build will likely fail.

2.4 Building LAMMPS via the Make.py script

The src directory includes a Make.py script, written in Python, which can be used to automate various steps of
the build process.

You can run the script from the src directory by typing either:

Make.py
python Make.py

which will give you info about the tool. For the former to work, you may need to edit the 1st line of the script
to point to your local Python. And you may need to insure the script is executable:

chmod +x Make.py
The following options are supported as switches:

o -i filel file2 ...

¢ -p packagel package? ...

¢ -u packagel package? ...

¢ -¢ packagel argl arg2 package? ...
e -0 dir

¢ -b machine

o s suffix1 suffix2 ...

e [dir

*-jN

2.4 Building LAMMPS via the Make.py script 170

LIGGGHTS Users Manual

e _h switchl switch2 ...

Help on any switch can be listed by using -h, e.g.
Make.py -h -i -p

At a hi-level, these are the kinds of package management and build tasks that can be performed easily, using
the Make.py tool:

¢ install/uninstall packages and build the associated external libs (use -p and -u and -e)

¢ install packages needed for one or more input scripts (use -i and -p)

¢ build LAMMPS, either in the src dir or new dir (use -b)

e create a new dir with only the source code needed for one or more input scripts (use -i and -0)

The last bullet can be useful when you wish to build a stripped-down version of LAMMPS to run a specific
script(s). Or when you wish to move the minimal amount of files to another platform for a remote LAMMPS
build.

Note that using Make.py is not a substitute for insuring you have a valid src/MAKE/Makefile.foo for your
system, or that external library Makefiles in any lib/* directories you use are also valid for your system. But
once you have done that, you can use Make.py to quickly include/exclude the packages and external libraries
needed by your input scripts.

2.5 Building LAMMPS as a library

LAMMPS itself can be built as a library, which can then be called from another application or a scripting
language. See this section for more info on coupling LAMMPS to other codes. Building LAMMPS as a
library is done by typing

make makelib
make —-f Makefile.lib foo

where foo is the machine name. Note that inclusion or exclusion of any desired optional packages should be
done before typing "make makelib". The first "make" command will create a current Makefile.lib with all the
file names in your src dir. The 2nd "make" command will use it to build LAMMPS as a library. This requires
that Makefile.foo have a library target (lib) and system-specific settings for ARCHIVE and ARFLAGS. See
Makefile.linux for an example. The build will create the file liblmp_foo.a which another application can link
to.

When used from a C++ program, the library allows one or more LAMMPS objects to be instantiated. All of
LAMMPS is wrapped in a LAMMPS_NS namespace; you can safely use any of its classes and methods from
within your application code, as needed.

When used from a C or Fortran program or a scripting language, the library has a simple function-style
interface, provided in src/library.cpp and src/library.h.

See the sample codes couple/simple/simple.cpp and simple.c as examples of C++ and C codes that invoke
LAMMPS thru its library interface. There are other examples as well in the couple directory which are
discussed in Section howto 10 of the manual. See Section python of the manual for a description of the
Python wrapper provided with LAMMPS that operates through the LAMMPS library interface.

The files src/library.cpp and library.h contain the C-style interface to LAMMPS. See Section _howto 19 of the
manual for a description of the interface and how to extend it for your needs.

2.5 Building LAMMPS as a library 171

LIGGGHTS Users Manual
2.6 Running LAMMPS

By default, LAMMPS runs by reading commands from stdin; e.g. Imp_linux < in.file. This means you first
create an input script (e.g. in.file) containing the desired commands. This section describes how input scripts
are structured and what commands they contain.

You can test LAMMPS on any of the sample inputs provided in the examples or bench directory. Input scripts
are named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run a standard Lennard-Jones benchmark on a Linux box, using mpirun to launch a
parallel job:

cd src

make linux

cp lmp_linux ../bench

cd ../bench

mpirun -np 4 Imp_linux <in.lj

See this page for timings for this and the other benchmarks on various platforms.

On a Windows box, you can skip making LAMMPS and simply download an executable, as described above,
though the pre-packaged executables include only certain packages.

To run a LAMMPS executable on a Windows machine, first decide whether you want to download the
non-MPI (serial) or the MPI (parallel) version of the executable. Download and save the version you have
chosen.

For the non-MPI version, follow these steps:

¢ Get a command prompt by going to Start->Run... , then typing "cmd".

¢ Move to the directory where you have saved Imp_win_no-mpi.exe (e.g. by typing: cd "Documents").

¢ At the command prompt, type "lmp_win_no-mpi -in in.lj", replacing in.lj with the name of your
LAMMPS input script.

For the MPI version, which allows you to run LAMMPS under Windows on multiple processors, follow these
steps:

¢ Download and install MPICH? for Windows.

¢ You'll need to use the mpiexec.exe and smpd.exe files from the MPICH2 package. Put them in same
directory (or path) as the LAMMPS Windows executable.

¢ Get a command prompt by going to Start->Run... , then typing "cmd".

* Move to the directory where you have saved Imp_win_mpi.exe (e.g. by typing: cd "Documents").

¢ Then type something like this: "mpiexec -np 4 -localonly lmp_win_mpi -in in.]j", replacing in.lj with
the name of your LAMMPS input script.

¢ Note that you may need to provide smpd with a passphrase --- it doesn't matter what you type.

¢ In this mode, output may not immediately show up on the screen, so if your input script takes a long
time to execute, you may need to be patient before the output shows up.

¢ Alternatively, you can still use this executable to run on a single processor by typing something like:
"lmp_win_mpi -in in.]j".

The screen output from LAMMPS is described in the next section. As it runs, LAMMPS also writes a
log.lammps file with the same information.

2.6 Running LAMMPS 172

http://lammps.sandia.gov/bench.html
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads

LIGGGHTS Users Manual

Note that this sequence of commands copies the LAMMPS executable (Imp_linux) to the directory with the
input files. This may not be necessary, but some versions of MPI reset the working directory to where the
executable is, rather than leave it as the directory where you launch mpirun from (if you launch Imp_linux on
its own and not under mpirun). If that happens, LAMMPS will look for additional input files and write its
output files to the executable directory, rather than your working directory, which is probably not what you
want.

If LAMMPS encounters errors in the input script or while running a simulation it will print an ERROR
message and stop or a WARNING message and continue. See Section errors for a discussion of the various
kinds of errors LAMMPS can or can't detect, a list of all ERROR and WARNING messages, and what to do
about them.

LAMMPS can run a problem on any number of processors, including a single processor. In theory you should
get identical answers on any number of processors and on any machine. In practice, numerical round-off can
cause slight differences and eventual divergence of molecular dynamics phase space trajectories.

LAMMPS can run as large a problem as will fit in the physical memory of one or more processors. If you run
out of memory, you must run on more processors or setup a smaller problem.

2.7 Command-line options

At run time, LAMMPS recognizes several optional command-line switches which may be used in any order.
Either the full word or a one-or-two letter abbreviation can be used:

® —c or -cuda

® —¢ or -echo

® _j or -in

¢ -h or -help

e -] or-log

® _p or -partition
¢ —pl or -plog

® _ps or -pscreen
® _r or -reorder
® _SC Or -screen
e _sf or -suffix

® -y Oor -var

For example, Imp_ibm might be launched as follows:

mpirun -np 16 lmp_ibm -v f tmp.out -1 my.log —-sc none <in.alloy
mpirun -np 16 lmp_ibm -var f tmp.out -log my.log —-screen none <in.alloy

Here are the details on the options:
-cuda on/off

Explicitly enable or disable CUDA support, as provided by the USER-CUDA package. If LAMMPS is built
with this package, as described above in Section 2.3, then by default LAMMPS will run in CUDA mode. If
this switch is set to "off", then it will not, even if it was built with the USER-CUDA package, which means
you can run standard LAMMPS or with the GPU package for testing or benchmarking purposes. The only
reason to set the switch to "on", is to check if LAMMPS was built with the USER-CUDA package, since an
error will be generated if it was not.

—echo style

2.7 Command-line options 173

LIGGGHTS Users Manual

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style,
each command read from the input script will be echoed to the screen and/or logfile. This can be useful to
figure out which line of your script is causing an input error. The default value is log. The echo style can also
be set by using the echo command in the input script itself.

-in file

Specify a file to use as an input script. This is an optional switch when running LAMMPS in one-partition
mode. If it is not specified, LAMMPS reads its input script from stdin - e.g. Imp_linux < in.run. This is a
required switch when running LAMMPS in multi-partition mode, since multiple processors cannot all read
from stdin.

~help

Print a list of options compiled into this executable for each LAMMPS style (atom_style, fix, compute,
pair_style, bond_style, etc). This can help you know if the command you want to use was included via the
appropriate package. LAMMPS will print the info and immediately exit if this switch is used.

-log file

Specify a log file for LAMMPS to write status information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the file log.lammps. If this switch is used, LAMMPS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.lammps file is created with hi-level status information.
Each partition also writes to a log.lammps.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level logfile is named "file" and each partition also logs information to a file.N.
For both one-partition and multi-partition mode, if the specified file is "none", then no log files are created.
Using a log command in the input script will override this setting. Option -plog will override the name of the
partition log files file.N.

-partition 8x2 4 5 ...

Invoke LAMMPS in multi-partition mode. When LAMMPS is run on P processors and this switch is not used,
LAMMPS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions,
each with N processors. Arguments of the form N mean a single partition with N processors. The sum of
processors in all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on
a total of 25 processors.

Running with multiple partitions can e useful for running multi-replica simulations, where each replica runs
on on one or a few processors. Note that with MPI installed on a machine (e.g. your desktop), you can run on
more (virtual) processors than you have physical processors.

To run multiple independent simulatoins from one input script, using multiple partitions, see Section howto 4
of the manual. World- and universe-style variables are useful in this context.

-plog file

Specify the base name for the partition log files, so partition N writes log information to file.N. If file is none,
then no partition log files are created. This overrides the filename specified in the -log command-line option.
This option is useful when working with large numbers of partitions, allowing the partition log files to be
suppressed (-plog none) or placed in a sub-directory (-plog replica_files/log.lammps) If this option is not used
the log file for partition N is log.lammps.N or whatever is specified by the -log command-line option.

-pscreen file

2.7 Command-line options 174

LIGGGHTS Users Manual

Specify the base name for the partition screen file, so partition N writes screen information to file.N. If file is
none, then no partition screen files are created. This overrides the filename specified in the -screen
command-line option. This option is useful when working with large numbers of partitions, allowing the
partition screen files to be suppressed (-pscreen none) or placed in a sub-directory (-pscreen
replica_files/screen). If this option is not used the screen file for partition N is screen.N or whatever is
specified by the -screen command-line option.

-reorder nth N
—-reorder custom filename

Reorder the processors in the MPI communicator used to instantiate LAMMPS, in one of several ways. The
original MPI communicator ranks all P processors from 0 to P-1. The mapping of these ranks to physical
processors is done by MPI before LAMMPS begins. It may be useful in some cases to alter the rank order.
E.g. to insure that cores within each node are ranked in a desired order. Or when using the run_style
verlet/split command with 2 partitions to insure that a specific Kspace processor (in the 2nd partition) is
matched up with a specific set of processors in the 1st partition. See the Section accelerate doc pages for
more details.

If the keyword nth is used with a setting N, then it means every Nth processor will be moved to the end of the
ranking. This is useful when using the run_style verlet/split command with 2 partitions via the -partition
command-line switch. The first set of processors will be in the first partition, the 2nd set in the 2nd partition.
The -reorder command-line switch can alter this so that the 1st N procs in the 1st partition and one proc in the
2nd partition will be ordered consecutively, e.g. as the cores on one physical node. This can boost
performance. For example, if you use "-reorder nth 4" and "-partition 9 3" and you are running on 12
processors, the processors will be reordered from

01234567289 1011

to

0124546289103 711

so that the processors in each partition will be

1245628910
71

0
3 1

See the "processors" command for how to insure processors from each partition could then be grouped
optimally for quad-core nodes.

If the keyword is custom”, then a file that specifies a permutation of the processor ranks is also specified. The
format of the reorder file is as follows. Any number of initial blank or comment lines (starting with a "#"
character) can be present. These should be followed by P lines of the form:

IJ

where P is the number of processors LAMMPS was launched with. Note that if running in multi-partition
mode (see the -partition switch above) P is the total number of processors in all partitions. The I and J values
describe a permutation of the P processors. Every I and J should be values from 0 to P-1 inclusive. In the set
of P I values, every proc ID should appear exactly once. Ditto for the set of P J values. A single LJ pairing
means that the physical processor with rank I in the original MPI communicator will have rank J in the
reordered communicator.

Note that rank ordering can also be specified by many MPI implementations, either by environment variables
that specify how to order physical processors, or by config files that specify what physical processors to

assign to each MPI rank. The -reorder switch simply gives you a portable way to do this without relying on

2.7 Command-line options 175

LIGGGHTS Users Manual

MPI itself. See the processors out command for how to output info on the final assignment of physical
processors to the LAMMPS simulation domain.

-screen file

Specify a file for LAMMPS to write its screen information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the screen. If this switch is used, LAMMPS writes to the specified file instead and you
will see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is
written to the screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is
specified in multi-partition mode, the hi-level screen dump is named "file" and each partition also writes
screen information to a file.N. For both one-partition and multi-partition mode, if the specified file is "none",
then no screen output is performed. Option -pscreen will override the name of the partition screen files file.N.

-suffix style

Use variants of various styles if they exist. The specified style can be opt, omp, gpu, or cuda. These refer to
optional packages that LAMMPS can be built with, as described above in Section 2.3. The "opt" style
corrsponds to the OPT package, the "omp" style to the USER-OMP package, the "gpu" style to the GPU
package, and the "cuda" style to the USER-CUDA package.

As an example, all of the packages provide a pair_style lj/cut variant, with style names lj/cut/opt, lj/cut/omp,
lj/cut/gpu, or lj/cut/cuda. A variant styles can be specified explicitly in your input script, e.g. pair_style
lj/cut/gpu. If the -suffix switch is used, you do not need to modify your input script. The specified suffix
(opt,omp,gpu,cuda) is automatically appended whenever your input script command creates a new atom, pair,
fix, compute, or run style. If the variant version does not exist, the standard version is created.

For the GPU package, using this command-line switch also invokes the default GPU settings, as if the
command "package gpu force/neigh 0 0 1" were used at the top of your input script. These settings can be
changed by using the package gpu command in your script if desired.

For the OMP package, using this command-line switch also invokes the default OMP settings, as if the
command "package omp *" were used at the top of your input script. These settings can be changed by using
the package omp command in your script if desired.

The suffix command can also set a suffix and it can also turn off/on any suffix setting made via the command
line.

-var name valuel value2 ...

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced
as ${abc}). An index-style variable will be created and populated with the subsequent values, e.g. a set of
filenames. Using this command-line option is equivalent to putting the line "variable name index valuel
value2 ..." at the beginning of the input script. Defining an index variable as a command-line argument
overrides any setting for the same index variable in the input script, since index variables cannot be
re-defined. See the variable command for more info on defining index and other kinds of variables and this
section for more info on using variables in input scripts.

NOTE: Currently, the command-line parser looks for arguments that start with "-" to indicate new switches.
Thus you cannot specify multiple variable values if any of they start with a "-", e.g. a negative numeric value.
It is OK if the first valuel starts with a "-", since it is automatically skipped.

2.7 Command-line options 176

LIGGGHTS Users Manual
2.8 LAMMPS screen output

As LAMMPS reads an input script, it prints information to both the screen and a log file about significant
actions it takes to setup a simulation. When the simulation is ready to begin, LAMMPS performs various
initializations and prints the amount of memory (in MBytes per processor) that the simulation requires. It also
prints details of the initial thermodynamic state of the system. During the run itself, thermodynamic
information is printed periodically, every few timesteps. When the run concludes, LAMMPS prints the final
thermodynamic state and a total run time for the simulation. It then appends statistics about the CPU time and
storage requirements for the simulation. An example set of statistics is shown here:

Loop time of 49.002 on 2 procs for 2004 atoms

oe

Pair time = 35.0495 (71.5267)

(%)
Bond time (%) = 0.092046 (0.187841)
Kspce time (%) = 6.42073 (13.103)
Neigh time (%) = 2.73485 (5.5811)
Comm time (%) = 1.50291 (3.06703)
Outpt time (%) = 0.013799 (0.0281601)
Other time (%) = 2.13669 (4.36041)
Nlocal: 1002 ave, 1015 max, 989 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Nghost: 8720 ave, 8724 max, 8716 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Neighs: 354141 ave, 361422 max, 346860 min

Histogram: 1 0 0 0 0 0 0 0 0 1

Total # of neighbors = 708282

Ave neighs/atom = 353.434

Ave special neighs/atom = 2.34032
Number of reneighborings = 42
Dangerous reneighborings = 2

The first section gives the breakdown of the CPU run time (in seconds) into major categories. The second
section lists the number of owned atoms (Nlocal), ghost atoms (Nghost), and pair-wise neighbors stored per
processor. The max and min values give the spread of these values across processors with a 10-bin histogram
showing the distribution. The total number of histogram counts is equal to the number of processors.

The last section gives aggregate statistics for pair-wise neighbors and special neighbors that LAMMPS keeps
track of (see the special bonds command). The number of times neighbor lists were rebuilt during the run is
given as well as the number of potentially "dangerous" rebuilds. If atom movement triggered neighbor list
rebuilding (see the neigh modify command), then dangerous reneighborings are those that were triggered on
the first timestep atom movement was checked for. If this count is non-zero you may wish to reduce the delay
factor to insure no force interactions are missed by atoms moving beyond the neighbor skin distance before a
rebuild takes place.

If an energy minimization was performed via the minimize command, additional information is printed, e.g.

Minimization stats:
E initial, next-to-last, final = -0.895962 -2.94193 -2.94342
Gradient 2-norm init/final= 1920.78 20.9992
Gradient inf-norm init/final= 304.283 9.61216
Iterations = 36
Force evaluations = 177

The first line lists the initial and final energy, as well as the energy on the next-to-last iteration. The next 2
lines give a measure of the gradient of the energy (force on all atoms). The 2-norm is the "length" of this force
vector; the inf-norm is the largest component. The last 2 lines are statistics on how many iterations and
force-evaluations the minimizer required. Multiple force evaluations are typically done at each iteration to

2.8 LAMMPS screen output 177

LIGGGHTS Users Manual

perform a 1d line minimization in the search direction.

If a kspace style long-range Coulombics solve was performed during the run (PPPM, Ewald), then additional
information is printed, e.g.

FFT time (% of Kspce) = 0.200313 (8.34477)
FFT Gflps 3d ld-only = 2.31074 9.19989

The first line gives the time spent doing 3d FFTs (4 per timestep) and the fraction it represents of the total
KSpace time (listed above). Each 3d FFT requires computation (3 sets of 1d FFTs) and communication
(transposes). The total flops performed is SNlog_2(N), where N is the number of points in the 3d grid. The
FFTs are timed with and without the communication and a Gflop rate is computed. The 3d rate is with
communication; the 1d rate is without (just the 1d FFTs). Thus you can estimate what fraction of your FFT
time was spent in communication, roughly 75% in the example above.

2.9 Tips for users of previous LAMMPS versions

The current C++ began with a complete rewrite of LAMMPS 2001, which was written in F90. Features of
earlier versions of LAMMPS are listed in Section history. The FO90 and F77 versions (2001 and 99) are also
freely distributed as open-source codes; check the LAMMPS WWW Site for distribution information if you
prefer those versions. The 99 and 2001 versions are no longer under active development; they do not have all
the features of C++ LAMMPS.

If you are a previous user of LAMMPS 2001, these are the most significant changes you will notice in C++
LAMMPS:

(1) The names and arguments of many input script commands have changed. All commands are now a single
word (e.g. read_data instead of read data).

(2) All the functionality of LAMMPS 2001 is included in C++ LAMMPS, but you may need to specify the
relevant commands in different ways.

(3) The format of the data file can be streamlined for some problems. See the read data command for details.
The data file section "Nonbond Coeff" has been renamed to "Pair Coeff" in C++ LAMMPS.

(4) Binary restart files written by LAMMPS 2001 cannot be read by C++ LAMMPS with a read restart
command. This is because they were output by F90 which writes in a different binary format than C or C++
writes or reads. Use the restart2data tool provided with LAMMPS 2001 to convert the 2001 restart file to a
text data file. Then edit the data file as necessary before using the C++ LAMMPS read data command to read
itin.

(5) There are numerous small numerical changes in C++ LAMMPS that mean you will not get identical

answers when comparing to a 2001 run. However, your initial thermodynamic energy and MD trajectory
should be close if you have setup the problem for both codes the same.

2.9 Tips for users of previous LAMMPS versions 178

http://lammps.sandia.gov

LIGGGHTS Users Manual

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

9. Additional tools

LAMMPS is designed to be a computational kernel for performing molecular dynamics computations.
Additional pre- and post-processing steps are often necessary to setup and analyze a simulation. A few
additional tools are provided with the LAMMPS distribution and are described in this section.

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Note that many users write their own setup or analysis tools or use other existing codes and convert their
output to a LAMMPS input format or vice versa. The tools listed here are included in the LAMMPS
distribution as examples of auxiliary tools. Some of them are not actively supported by Sandia, as they were
contributed by LAMMPS users. If you have problems using them, we can direct you to the authors.

The source code for each of these codes is in the tools sub-directory of the LAMMPS distribution. There is a
Makefile (which you may need to edit for your platform) which will build several of the tools which reside in
that directory. Some of them are larger packages in their own sub-directories with their own Makefiles.

® amber2lm,

® binary2txt

e ch2lm

® chain

e createatoms
e data2xmovie
e cam database
® eam generate
o eff

® emacs

°ipp

¢ Imp2arc

¢ Imp2cfg

¢ Imp2vmd
® matlab

® micelle2d

e msi2lm

e pymol asphere
e python

® reax

e restart2data

e thermo extract
® vim

® xmovie

amber2imp tool

The amber2lmp sub-directory contains two Python scripts for converting files back-and-forth between the
AMBER MD code and LAMMPS. See the README file in amber2Imp for more information.

These tools were written by Keir Novik while he was at Queen Mary University of London. Keir is no longer

there and cannot support these tools which are out-of-date with respect to the current LAMMPS version (and
maybe with respect to AMBER as well). Since we don't use these tools at Sandia, you'll need to experiment

9. Additional tools 179

http://lammps.sandia.gov
http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

LIGGGHTS Users Manual

with them and make necessary modifications yourself.

binary2txt tool

The file binary2txt.cpp converts one or more binary LAMMPS dump file into ASCII text files. The syntax for
running the tool is

binary2txt filel file2 ...

which creates filel.txt, file2.txt, etc. This tool must be compiled on a platform that can read the binary file
created by a LAMMPS run, since binary files are not compatible across all platforms.

ch2imp tool

The ch2lmp sub-directory contains tools for converting files back-and-forth between the CHARMM MD code
and LAMMPS.

They are intended to make it easy to use CHARMM as a builder and as a post-processor for LAMMPS. Using
charmm2lammps.pl, you can convert an ensemble built in CHARMM into its LAMMPS equivalent. Using
lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.

See the README file in the ch2lmp sub-directory for more information.

These tools were created by Pieter in't Veld (pjintve at sandia.gov) and Paul Crozier (pscrozi at sandia.gov) at
Sandia.

chain tool

The file chain.f creates a LAMMPS data file containing bead-spring polymer chains and/or monomer solvent
atoms. It uses a text file containing chain definition parameters as an input. The created chains and solvent
atoms can strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to
un-overlap it. The syntax for running the tool is

chain <def.chain > data.file

See the def.chain or def.chain.ab files in the tools directory for examples of definition files. This tool was used
to create the system for the chain benchmark.

createatoms tool

The tools/createatoms directory contains a Fortran program called create Atoms.f which can generate a variety
of interesting crystal structures and geometries and output the resulting list of atom coordinates in LAMMPS
or other formats.

See the included Manual.pdf for details.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov.

data2xmovie tool

The file data2xmovie.c converts a LAMMPS data file into a snapshot suitable for visualizing with the xmovie
tool, as if it had been output with a dump command from LAMMPS itself. The syntax for running the tool is

data2xmovie options <infile > outfile

amber2Imp tool 180

LIGGGHTS Users Manual

See the top of the data2xmovie.c file for a discussion of the options.

eam database tool

The tools/eam_database directory contains a Fortran program that will generate EAM alloy setf] potential files
for any combination of 16 elements: Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, Zr. The files
can then be used with the pair_style eam/alloy command.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov, and is based on his paper:

X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B, 69, 144113 (2004).

eam generate tool

The tools/eam_generate directory contains several one-file C programs that convert an analytic formula into a
tabulated embedded atom method (EAM) setfl potential file. The potentials they produce are in the potentials
directory, and can be used with the pair_style eam/alloy command.

The source files and potentials were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com).

eff tool

The tools/eff directory contains various scripts for generating structures and post-processing output for
simulations using the electron force field (eFF).

These tools were provided by Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).

emacs tool

The tools/emacs directory contains a Lips add-on file for Emacs that enables a lammps-mode for editing of
input scripts when using Emacs, with various highlighting options setup.

These tools were provided by Aidan Thompson at Sandia (athomps at sandia.gov).

ipp tool

The tools/ipp directory contains a Perl script ipp which can be used to facilitate the creation of a complicated
file (say, a lammps input script or tools/createatoms input file) using a template file.

ipp was created and is maintained by Reese Jones (Sandia), rjones at sandia.gov.

See two examples in the tools/ipp directory. One of them is for the tools/createatoms tool's input file.

Imp2arc tool

The Imp2arc sub-directory contains a tool for converting LAMMPS output files to the format for Accelrys'
Insight MD code (formerly MSI/Biosym and its Discover MD code). See the README file for more
information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is
now at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool was updated for the current LAMMPS C++ version by Jeff Greathouse at Sandia (jagreat at
sandia.gov).

data2xmovie tool 181

LIGGGHTS Users Manual

Imp2cfg tool

The Imp2cfg sub-directory contains a tool for converting LAMMPS output files into a series of *.cfg files
which can be read into the AtomEye visualizer. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).

Imp2vmd tool

The Imp2vmd sub-directory contains a README.txt file that describes details of scripts and plugin support
within the VMD package for visualizing LAMMPS dump files.

The VMD plugins and other supporting scripts were written by Axel Kohlmeyer (akohlmey at
cmm.chem.upenn.edu) at U Penn.

matlab tool

The matlab sub-directory contains several MATLAB scripts for post-processing LAMMPS output. The scripts
include readers for log and dump files, a reader for EAM potential files, and a converter that reads LAMMPS
dump files and produces CFG files that can be visualized with the AtomEye visualizer.

See the README.pdf file for more information.

These scripts were written by Arun Subramaniyan at Purdue Univ (asubrama at purdue.edu).

micelle2d tool

The file micelle2d.f creates a LAMMPS data file containing short lipid chains in a monomer solution. It uses
a text file containing lipid definition parameters as an input. The created molecules and solvent atoms can
strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un-overlap it.
The syntax for running the tool is

micelle2d <def.micelle2d > data.file

See the def.micelle2d file in the tools directory for an example of a definition file. This tool was used to create
the system for the micelle example.

msi2lmp tool

The msi2lmp sub-directory contains a tool for creating LAMMPS input data files from Accelrys' Insight MD
code (formerly MSI/Biosym and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is
now at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool may be out-of-date with respect to the current LAMMPS and Insight versions. Since we don't use it
at Sandia, you'll need to experiment with it yourself.

pymol_asphere tool

The pymol_asphere sub-directory contains a tool for converting a LAMMPS dump file that contains
orientation info for ellipsoidal particles into an input file for the PyMol visualization package.

Imp2arc tool 182

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.ks.uiuc.edu/Research/vmd
http://www.mathworks.com
http://mt.seas.upenn.edu/Archive/Graphics/A
http://pymol.sourceforge.net

LIGGGHTS Users Manual

Specifically, the tool triangulates the ellipsoids so they can be viewed as true ellipsoidal particles within
PyMol. See the README and examples directory within pymol_asphere for more information.

This tool was written by Mike Brown at Sandia.

python tool

The python sub-directory contains several Python scripts that perform common LAMMPS post-processing
tasks, such as:

¢ extract thermodynamic info from a log file as columns of numbers

¢ plot two columns of thermodynamic info from a log file using GnuPlot

¢ sort the snapshots in a dump file by atom ID

¢ convert multiple NEB dump files into one dump file for viz

¢ convert dump files into XYZ, CFG, or PDB format for viz by other packages

These are simple scripts built on Pizza.py modules. See the README for more info on Pizza.py and how to
use these scripts.

reax tool

The reax sub-directory contains stand-alond codes that can post-process the output of the fix reax/bonds
command from a LAMMPS simulation using ReaxFF. See the README.txt file for more info.

These tools were written by Aidan Thompson at Sandia.

restart2data tool

The file restart2data.cpp converts a binary LAMMPS restart file into an ASCII data file. The syntax for
running the tool is

restart2data restart-file data-file (input-file)

Input-file is optional and if specified will contain LAMMPS input commands for the masses and force field
parameters, instead of putting those in the data-file. Only a few force field styles currently support this option.

This tool must be compiled on a platform that can read the binary file created by a LAMMPS run, since
binary files are not compatible across all platforms.

Note that a text data file has less precision than a binary restart file. Hence, continuing a run from a converted
data file will typically not conform as closely to a previous run as will restarting from a binary restart file.

If a "%" appears in the specified restart-file, the tool expects a set of multiple files to exist. See the restart and
write restart commands for info on how such sets of files are written by LAMMPS, and how the files are
named.

thermo_extract tool

The thermo_extract tool reads one of more LAMMPS log files and extracts a thermodynamic value (e.g.
Temp, Press). It spits out the time,value as 2 columns of numbers so the tool can be used as a quick way to
plot some quantity of interest. See the header of the thermo_extract.c file for the syntax of how to run it and

other details.

This tool was written by Vikas Varshney at Wright Patterson AFB (vikas.varshney at gmail.com).

pymol_asphere tool 183

http://www.sandia.gov/~sjplimp/pizza.html

LIGGGHTS Users Manual

vim tool

The files in the tools/vim directory are add-ons to the VIM editor that allow easier editing of LAMMPS input
scripts. See the README.txt file for details.

These files were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com)

xmovie tool

The xmovie tool is an X-based visualization package that can read LAMMPS dump files and animate them. It
is in its own sub-directory with the tools directory. You may need to modify its Makefile so that it can find the
appropriate X libraries to link against.

The syntax for running xmovie is
xmovie options dump.filel dump.file2 ...

If you just type "xmovie" you will see a list of options. Note that by default, LAMMPS dump files are in
scaled coordinates, so you typically need to use the -scale option with xmovie. When xmovie runs it opens a
visualization window and a control window. The control options are straightforward to use.

Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he spent a summer at Sandia. It displays
2d projections of a 3d domain. While simple in design, it is an amazingly fast program that can render large
numbers of atoms very quickly. It's a useful tool for debugging LAMMPS input and output and making sure
your simulation is doing what you think it should. The animations on the Examples page of the LAMMPS
WWW site were created with xmovie.

I've lost contact with Mike, so I hope he's comfortable with us distributing his great tool!

thermo_extract tool 184

http://lammps.sandia.gov
http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style charmm command

angle_style charmm/omp command
Syntax:

angle_style charmm

Examples:

angle_style charmm
angle_coeff 1 300.0 107.0 50.0 3.0

Description:

The charmm angle style uses the potential
- 2 - » , 9
H=K (9—90) +[XUB('I - ’UB)

with an additional Urey_Bradley term based on the distance r between the 1st and 3rd atoms in the angle. K,
thetaO, Kub, and Rub are coefficients defined for each angle type.

See (MacKerell) for a description of the CHARMM force field.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/radian’2)

e theta((degrees)

e K_ub (energy/distance”2)
¢ r_ub (distance)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

xmovie tool 185

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making L AMMPS section for more info on packages.

Related commands:

angle coeff

Default: none

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

angle_style charmm/omp command 186

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style class2 command

angle_style class2/omp command
Syntax:

angle_style class2

Examples:

angle_style class2

angle_coeff * 75.0

angle_coeff 1 bb 10.5872 1.0119 1.5228
angle_coeff * ba 3.6551 24.895 1.0119 1.5228

Description:

The class2 angle style uses the potential

E = E,+ Ep+ Epg

E, = Ky0—00)2+ K30 — 0+ K40 — 6)*
E{;b = JI(IU = ?"l)(?"jk T ?'2)
By, = Nl(?"ij — ?"1)(9 — 6o) + N, ('*’".Hc - ?”2)(9 — o)

where Ea is the angle term, Ebb is a bond-bond term, and Eba is a bond-angle term. Theta0 is the equilibrium
angle and r1 and r2 are the equilibrium bond lengths.

See (Sun) for a description of the COMPASS class?2 force field.

Coefficients for the Ea, Ebb, and Eba formulas must be defined for each angle type via the bond coeff
command as in the example above, or in the data file or restart files read by the read data or read restart
commands.

These are the 4 coefficients for the Ea formula:

¢ thetaO (degrees)

¢ K2 (energy/radian”2)
¢ K3 (energy/radian”3)
¢ K4 (energy/radian™4)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally; hence the units of the various K
are in per-radian.

For the Ebb formula, each line in a bond coeff command in the input script lists 4 coefficients, the first of
which is "bb" to indicate they are BondBond coefficients. In a data file, these coefficients should be listed
under a "BondBond Coeffs" heading and you must leave out the "bb", i.e. only list 3 coefficients after the
angle type.

angle_style class2 command 187

http://lammps.sandia.gov

LIGGGHTS Users Manual

® bb

® M (energy/distance”2)
e r] (distance)

e 12 (distance)

For the Eba formula, each line in a bond coeff command in the input script lists 5 coefficients, the first of
which is "ba" to indicate they are BondAngle coefficients. In a data file, these coefficients should be listed
under a "BondAngle Coeffs" heading and you must leave out the "ba", i.e. only list 4 coefficients after the
angle type.

® ba

® N1 (energy/distance”2)
® N2 (energy/distance”2)
e r] (distance)

e 12 (distance)

The thetaO value in the Eba formula is not specified, since it is the same value from the Ea formula.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the CLASS?2 package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

angle_style class2/omp command 188

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_coeff command

Syntax:
angle_coeff N args

¢ N = angle type (see asterisk form below)
¢ args = coefficients for one or more angle types

Examples:

angle_coeff 1 300.0 107.0
angle_coeff * 5.0
angle_coeff 2*10 5.0

Description:

Specify the angle force field coefficients for one or more angle types. The number and meaning of the
coefficients depends on the angle style. Angle coefficients can also be set in the data file read by the read data
command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple angle types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of angle types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using an angle_coeff command can override a previous setting for the same angle type. For
example, these commands set the coeffs for all angle types, then overwrite the coeffs for just angle type 2:

angle_coeff * 200.0 107.0 1.2
angle_coeff 2 50.0 107.0

A line in a data file that specifies angle coefficients uses the exact same format as the arguments of the
angle_coeff command in an input script, except that wild-card asterisks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Angle Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

1 300.0 107.0

The angle style class? is an exception to this rule, in that an additional argument is used in the input script to
allow specification of the cross-term coefficients. See its doc page for details.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

¢ angle style none - turn off angle interactions
e angle style hybrid - define multiple styles of angle interactions

e angle style charmm - CHARMM angle

angle_coeff command 189

http://lammps.sandia.gov

LIGGGHTS Users Manual

e angle style class2 - COMPASS (class 2) angle

e angle style cosine - cosine angle potential

e angle style cosine/delta - difference of cosines angle potential
e angle style cosine/periodic - DREIDING angle

e angle style cosine/squared - cosine squared angle potential

¢ angle style harmonic - harmonic angle
e angle style table - tabulated by angle

Restrictions:

This command must come after the simulation box is defined by a read data, read restart, or create box
command.

An angle style must be defined before any angle coefficients are set, either in the input script or in a data file.
Related commands:

angle style

Default: none

angle_coeff command 190

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine command

angle_style cosine/omp command
Syntax:

angle_style cosine

Examples:

angle_style cosine
angle_coeff * 75.0

Description:

The cosine angle style uses the potential

E = K[1 + cos(0)]

where K is defined for each angle type.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

angle coeff

angle_style cosine command 191

http://lammps.sandia.gov

LIGGGHTS Users Manual

Default: none

angle_style cosine/omp command 192

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/delta command

angle_style cosine/delta/omp command
Syntax:

angle_style cosine/delta

Examples:

angle_style cosine/delta
angle_coeff 2*4 75.0 100.0

Description:

The cosine/delta angle style uses the potential
E = K[l — cos(f — 6,)]
where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is

included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
¢ thetaO (degrees)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

angle_style cosine/delta command 193

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:

angle coeff, angle style cosine/squared

Default: none

angle_style cosine/delta/omp command 194

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/periodic command

angle_style cosine/periodic/omp command
Syntax:

angle_style cosine/periodic

Examples:

angle_style cosine/periodic
angle_coeff * 75.0 1 6

Description:
The cosine/periodic angle style uses the following potential, which is commonly used in the DREIDING force

field, particularly for organometallic systems where n = 4 might be used for an octahedral complex and n = 3
might be used for a trigonal center:

E=C|1- B(—1)"cos (nd)]

where C, B and n are coefficients defined for each angle type.
See (Mayo) for a description of the DREIDING force field

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ C (energy)
eB=1or-1
en=1,2,3,4,5 or 6 for periodicity

Note that the prefactor C is specified and not the overall force constant K = C/n”*2. When B =1, it leads to a
minimum for the linear geometry. When B = -1, it leads to a maximum for the linear geometry.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

angle_style cosine/periodic command 195

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

angle coeff

Default: none

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

angle_style cosine/periodic/omp command 196

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift command

angle_style cosine/shift/omp command
Syntax:

angle_style cosine/shift

Examples:

angle_style cosine/shift
angle_coeff * 10.0 45.0

Description:
The cosine/shift angle style uses the potential
Uman

E=-"—r [1+ Cos(0 — 6p)]

where theta0 is the equilibrium angle. The potential is bounded between -Umin and zero. In the neighborhood
of the minimum E=- Umin + Umin/4(theta-theta0)"2 hence the spring constant is umin/2.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

® umin (energy)
¢ theta (angle)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

angle_style cosine/shift command 197

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:

angle coeff, angle cosineshiftexp

Default: none

angle_style cosine/shift’tomp command 198

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift/exp command

angle_style cosine/shift/exp/omp command
Syntax:

angle_style cosine/shift/exp

Examples:

angle_style cosine/shift/exp
angle_coeff * 10.0 45.0 2.0

Description:

The cosine/shift/exp angle style uses the potential

e —al(0,00) _ 1

E=-U,n. i with U(0,6y) = —0.5 (1 + cos(0 — 6,))
B

where Umin, theta, and a are defined for each angle type.

The potential is bounded between [-Umin:0] and the minimum is located at the angle thetaQ. The a parameter
can be both positive or negative and is used to control the spring constant at the equilibrium.

The spring constant is given by k = A exp(A) Umin / [2 (Exp(a)-1)]. For a > 3, k/Umin = a/2 to better than 5%
relative error. For negative values of the a parameter, the spring constant is essentially zero, and anharmonic
terms takes over. The potential is furthermore well behaved in the limit a -> 0, where it has been implemented
to linear order in a for a < 0.001. In this limit the potential reduces to the cosineshifted potential.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

® umin (energy)
¢ theta (angle)
¢ A (real number)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

angle_style cosine/shift’exp command 199

http://lammps.sandia.gov

LIGGGHTS Users Manual

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle coeff, angle cosineshift, dihedral cosineshift

Default: none

angle_style cosine/shift/exp/omp command 200

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/squared command

angle_style cosine/squared/omp command
Syntax:

angle_style cosine/squared

Examples:

angle_style cosine/squared
angle_coeff 2*4 75.0 100.0

Description:

The cosine/squared angle style uses the potential
- 2
E = K|cos(0) — cos(y)]*

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is
included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
e theta((degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

angle_style cosine/squared command 201

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:

angle coeff

Default: none

angle_style cosine/squared/omp command 202

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style dipole command

angle_style dipole/omp command
Syntax:

angle_style dipole

Examples:

angle_style dipole
angle_coeff 6 2.1 180.0

Description:

The dipole angle style is used to control the orientation of a dipolar atom within a molecule (Orsi).
Specifically, the dipole angle style restrains the orientation of a point dipole mu_j (embedded in atom 'j') with
respect to a reference (bond) vector r_ij =r_i - r_j, where 'i' is another atom of the same molecule (typically, i’

and 'j' are also covalently bonded).

It is convenient to define an angle gamma between the 'free’ vector mu_j and the reference (bond) vector r_ij:

K ®Tij

Hj Tij

CONTY =
The dipole angle style uses the potential:

E = K(cosvy — cos~p)?

where K is a rigidity constant and gamma0 is an equilibrium (reference) angle.

The torque on the dipole can be obtained by differentiating the potential using the 'chain rule' as in appendix

C.3 of (Allen):

2K (cosy — cos)

5 Tij

T

Tij X [j

|

Example: if gammal is set to 0 degrees, the torque generated by the potential will tend to align the dipole
along the reference direction defined by the (bond) vector r_ij (in other words, mu_j is restrained to point
towards atom '1').

Note that the angle dipole potential does not give rise to any force, because it does not depend on the distance
between i and j (it only depends on the angle between mu_j and r_ij).

angle_style dipole command 203

http://lammps.sandia.gov

LIGGGHTS Users Manual

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
e gamma((degrees)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.
Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

IMPORTANT NOTE: In the "Angles" section of the data file, the atom ID 'j' corresponding to the dipole to
restrain must come before the atom ID of the reference atom 'i'. A third atom ID k' must also be provided,
although 'k’ is just a 'dummy' atom which can be any atom; it may be useful to choose a convention (e.g.,
'k'="1") and adhere to it. For example, if ID=1 for the dipolar atom to restrain, and ID=2 for the reference atom,
the corresponding line in the "Angles" section of the data file would read: X X 122

The "newton" command for intramolecular interactions must be "on" (which is the default).

This angle style should not be used with SHAKE.

Related commands:

angle coeff, angle hybrid

Default: none

(Orsi) Orsi & Essex, The ELBA force field for coarse-grain modeling of lipid membranes, PloS ONE 6(12):
€28637, 2011.

(Allen) Allen & Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

angle_style dipole/omp command 204

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style harmonic command

angle_style harmonic/omp command
Syntax:

angle_style harmonic

Examples:

angle_style harmonic
angle_coeff 1 300.0 107.0

Description:

The harmonic angle style uses the potential
- 2
E =K —0,)
where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is

included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/radian”2)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions: none

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

angle_style harmonic command 205

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:

angle coeff

Default: none

angle_style harmonic/omp command 206

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style hybrid command
Syntax:
angle_style hybrid stylel style2 ...
¢ stylel,style2 = list of one or more angle styles

Examples:

angle_style hybrid harmonic cosine
angle_coeff 1 harmonic 80.0 30.0
angle_coeff 2* cosine 50.0

Description:

The hybrid style enables the use of multiple angle styles in one simulation. An angle style is assigned to each
angle type. For example, angles in a polymer flow (of angle type 1) could be computed with a harmonic
potential and angles in the wall boundary (of angle type 2) could be computed with a cosine potential. The
assignment of angle type to style is made via the angle coeff command or in the data file.

In the angle_coeff commands, the name of an angle style must be added after the angle type, with the
remaining coefficients being those appropriate to that style. In the example above, the 2 angle_coeff
commands set angles of angle type 1 to be computed with a harmonic potential with coefficients 80.0, 30.0
for K, thetaO. All other angle types (2-N) are computed with a cosine potential with coefficient 50.0 for K.

If angle coefficients are specified in the data file read via the read data command, then the same rule applies.
E.g. "harmonic” or "cosine", must be added after the angle type, for each line in the "Angle Coeffs" section,

e.g.
Angle Coeffs

1 harmonic 80.0 30.0
2 cosine 50.0

If class2 is one of the angle hybrid styles, the same rule holds for specifying additional BondBond (and
BondAngle) coefficients either via the input script or in the data file. L.e. class2 must be added to each line
after the angle type. For lines in the BondBond (or BondAngle) section of the data file for angle types that are
not class2, you must use an angle style of skip as a placeholder, e.g.

BondBond Coeffs

1 skip
2 class2 3.6512 1.0119 1.0119

Note that it is not necessary to use the angle style skip in the input script, since BondBond (or BondAngle)
coefficients need not be specified at all for angle types that are not class2.

An angle style of none with no additional coefficients can be used in place of an angle style, either in a input
script angle_coeff command or in the data file, if you desire to turn off interactions for specific angle types.

Restrictions:

angle_style hybrid command 207

http://lammps.sandia.gov

LIGGGHTS Users Manual

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Unlike other angle styles, the hybrid angle style does not store angle coefficient info for individual sub-styles
in a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify
angle_coeff commands.

Related commands:

angle coeff

Default: none

angle_style hybrid command 208

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style none command
Syntax:
angle_style none

Examples:

angle_style none
Description:

Using an angle style of none means angle forces are not computed, even if triplets of angle atoms were listed
in the data file read by the read data command.

Restrictions: none
Related commands: none

Default: none

angle_style none command 209

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style sdk command

Syntax:
angle_style sdk

angle_style sdk/omp
Examples:

angle_style sdk
angle_coeff 1 300.0 107.0

Description:

The sdk angle style is a combination of the harmonic angle potential,

E=K(0—6)*

where theta(is the equilibrium value of the angle and K a prefactor, with the repulsive part of the non-bonded
lji/sdk pair style between the atoms 1 and 3. This angle potential is intended for coarse grained MD simulations

with the CMM parametrization using the pair_style 1j/sdk. Relative to the pair_style [j/sdk, however, the
energy is shifted by epsilon, to avoid sudden jumps. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above:

¢ K (energy/radian”2)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2. The also required /j/sdk parameters will be extracted automatically from the pair_style.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-CG-CMM package. See the Making

LAMMPS section for more info on packages.

Related commands:

angle coeff, angle style harmonic, pair_style 1j/sdk, pair_style lj/sdk/coul/long

Default: none

angle_style sdk command

210

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style command
Syntax:
angle_style style
¢ style = none or hybrid or charmm or class2 or cosine or cosine/squared or harmonic
Examples:

angle_style harmonic
angle_style charmm
angle_style hybrid harmonic cosine

Description:

Set the formula(s) LAMMPS uses to compute angle interactions between triplets of atoms, which remain in
force for the duration of the simulation. The list of angle triplets is read in by a read data or read restart
command from a data or restart file.

Hybrid models where angles are computed using different angle potentials can be setup using the hybrid angle
style.

The coefficients associated with a angle style can be specified in a data or restart file or via the angle coeff
command.

All angle potentials store their coefficient data in binary restart files which means angle_style and angle coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read restart
command for details on how to do this. The one exception is that angle_style hybrid only stores the list of
sub-styles in the restart file; angle coefficients need to be re-specified.

IMPORTANT NOTE: When both an angle and pair style is defined, the special bonds command often needs
to be used to turn off (or weight) the pairwise interaction that would otherwise exist between 3 bonded atoms.

In the formulas listed for each angle style, theta is the angle between the 3 atoms in the angle.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

¢ angle style none - turn off angle interactions
e angle style hybrid - define multiple styles of angle interactions

e angle style charmm - CHARMM angle

e angle style class?2 - COMPASS (class 2) angle

e angle style cosine - cosine angle potential

e angle style cosine/delta - difference of cosines angle potential
e angle style cosine/periodic - DREIDING angle

¢ angle style cosine/squared - cosine squared angle potential

¢ angle style harmonic - harmonic angle
e angle style table - tabulated by angle

angle_style command 211

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

Angle styles can only be set for atom_styles that allow angles to be defined.

Most angle styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
bond potentials tell if it is part of a package.

Related commands:

angle coeff

Default:

angle_style none

angle_style command 212

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style table command

angle_style table/omp command

Syntax:
angle_style table style N

¢ style = linear or spline = method of interpolation
¢ N =use N values in table

Examples:

angle_style table linear 1000
angle_coeff 3 file.table ENTRY1

Description:

Style table creates interpolation tables of length N from angle potential and derivative values listed in a file(s)
as a function of angle The files are read by the angle coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
derivative values at each of N angles. During a simulation, these tables are used to interpolate energy and
force values on individual atoms as needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the angle is used to find 2 surrounding table values from which an energy or its derivative
is computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table.
The angle is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial
which computes the energy or derivative.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above.

¢ filename
® keyword

The filename specifies a file containing tabulated energy and derivative values. The keyword specifies a
section of the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):
Angle potential for harmonic (one or more comment or blank lines)

HAM
N 181 FP 0 0 EQ 90.0

(keyword is the first text on line)
(N, FP, EQ parameters)

(blank line)
(
(

N 181 FP 0 O N, FP parameters)
1 0.0 200.5 2.5 index, angle, energy, derivative)
2 1.0 198.0 2.5

181 180.0 0.0 0.0

angle_style table command 213

http://lammps.sandia.gov

LIGGGHTS Users Manual

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the angle coeff
command. The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword
followed by one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the angle style table command. Let Ntable = N in the angle_style command,
and Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines
using the Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and
derivative values at Ntable different points. The resulting tables of length Ntable are then used as described
above, when computing energy and force for individual angles and their atoms. This means that if you want
the interpolation tables of length Ntable to match exactly what is in the tabulated file (with effectively no
preliminary interpolation), you should set Ntable = Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the 2nd
derivatives at the innermost and outermost angle settings. These values are needed by the spline construction
routines. If not specified by the "FP" parameter, they are estimated (less accurately) by the first two and last
two derivative values in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium angle value, which is used,
for example, by the fix shake command. If not used, the equilibrium angle is set to 180.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is the angle value (in degrees), the 3rd value is the energy (in energy units), and the 4th
is -dE/d(theta) (also in energy units). The 3rd term is the energy of the 3-atom configuration for the specified
angle. The last term is the derivative of the energy with respect to the angle (in degrees, not radians). Thus the
units of the last term are still energy, not force. The angle values must increase from one line to the next. The
angle values must also begin with 0.0 and end with 180.0, i.e. span the full range of possible angles.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

angle_style table/omp command 214

LIGGGHTS Users Manual
angle coeff

Default: none

angle_style table/omp command 215

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_modify command
Syntax:
atom_modify keyword wvalues

¢ one or more keyword/value pairs may be appended
¢ keyword = map or first or sort

map value = array or hash
first value = group-ID = group whose atoms will appear first in internal atom lists
sort values = Nfreqg binsize

Nfreg = sort atoms spatially every this many time steps
binsize = bin size for spatial sorting (distance units)

Examples:

atom_modify map hash
atom_modify map array sort 10000 2.0
atom_modify first colloid

Description:
Modify properties of the atom style selected within LAMMPS.

The map keyword determines how atom ID lookup is done for molecular problems. Lookups are performed
by bond (angle, etc) routines in LAMMPS to find the local atom index associated with a global atom ID.
When the array value is used, each processor stores a lookup table of length N, where N is the total # of atoms
in the system. This is the fastest method for most simulations, but a processor can run out of memory to store
the table for very large simulations. The hash value uses a hash table to perform the lookups. This method can
be slightly slower than the array method, but its memory cost is proportional to N/P on each processor, where
P is the total number of processors running the simulation.

The first keyword allows a group to be specified whose atoms will be maintained as the first atoms in each
processor's list of owned atoms. This in only useful when the specified group is a small fraction of all the
atoms, and there are other operations LAMMPS is performing that will be sped-up significantly by being able
to loop over the smaller set of atoms. Otherwise the reordering required by this option will be a net
slow-down. The neigh modify include and communicate group commands are two examples of commands
that require this setting to work efficiently. Several fixes, most notably time integration fixes like fix nve, also
take advantage of this setting if the group they operate on is the group specified by this command. Note that
specifying "all" as the group-ID effectively turns off the first option.

It is OK to use the first keyword with a group that has not yet been defined, e.g. to use the atom_modify first
command at the beginning of your input script. LAMMPS does not use the group until a simullation is run.

The sort keyword turns on a spatial sorting or reordering of atoms within each processor's sub-domain every
Nfreq timesteps. If Nfreq is set to O, then sorting is turned off. Sorting can improve cache performance and
thus speed-up a LAMMPS simulation, as discussed in a paper by (Meloni). Its efficacy depends on the
problem size (atoms/processor), how quickly the system becomes disordered, and various other factors. As a
general rule, sorting is typically more effective at speeding up simulations of liquids as opposed to solids. In
tests we have done, the speed-up can range from zero to 3-4x.

Reordering is peformed every Nfreq timesteps during a dynamics run or iterations during a minimization.
More precisely, reordering occurs at the first reneighboring that occurs after the target timestep. The

atom_modify command 216

http://lammps.sandia.gov

LIGGGHTS Users Manual

reordering is performed locally by each processor, using bins of the specified binsize. If binsize is set to 0.0,
then a binsize equal to half the neighbor cutoff distance (force cutoff plus skin distance) is used, which is a
reasonable value. After the atoms have been binned, they are reordered so that atoms in the same bin are
adjacent to each other in the processor's 1d list of atoms.

The goal of this procedure is for atoms to put atoms close to each other in the processor's one-dimensional list
of atoms that are also near to each other spatially. This can improve cache performance when pairwise
intereractions and neighbor lists are computed. Note that if bins are too small, there will be few atoms/bin.
Likewise if bins are too large, there will be many atoms/bin. In both cases, the goal of cache locality will be
undermined.

IMPORTANT NOTE: Running a simulation with sorting on versus off should not change the simulation
results in a statistical sense. However, a different ordering will induce round-off differences, which will lead
to diverging trajectories over time when comparing two simluations. Various commands, particularly those
which use random numbers (e.g. velocity create, and fix langevin), may generate (statistically identical)
results which depend on the order in which atoms are processed. The order of atoms in a dump file will also
typically change if sorting is enabled.

Restrictions:

The map keyword can only be used before the simulation box is defined by a read data or create box
command.

The first and sort options cannot be used together. Since sorting is on by default, it will be turned off if the
first keyword is used with a group-ID that is not "all".

Related commands: none
Default:
By default, atomic (non-molecular) problems do not allocate maps. For molecular problems, the option

default is map = array. By default, a "first" group is not defined. By default, sorting is enabled with a
frequency of 1000 and a binsize of 0.0, which means the neighbor cutoff will be used to set the bin size.

(Meloni) Meloni, Rosati and Colombo, J Chem Phys, 126, 121102 (2007).

atom_modify command 217

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_style command
Syntax:
atom_style style args

¢ style = angle or atomic or bond or charge or dipole or electron or ellipsoid or full or line or meso or
molecular or peri or sphere or granular or tri or hybrid or sph

args = none for any style except hybrid
hybrid args = list of one or more sub-styles
Examples:

atom_style atomic

atom_style bond

atom_style full

atom_style hybrid charge bond

Description:

Define what style of atoms to use in a simulation. This determines what attributes are associated with the
atoms. This command must be used before a simulation is setup via a read data, read restart, or create box
command.

Once a style is assigned, it cannot be changed, so use a style general enough to encompass all attributes. E.g.
with style bond, angular terms cannot be used or added later to the model. It is OK to use a style more general
than needed, though it may be slightly inefficient.

The choice of style affects what quantities are stored by each atom, what quantities are communicated
between processors to enable forces to be computed, and what quantities are listed in the data file read by the
read data command.

These are the additional attributes of each style and the typical kinds of physical systems they are used to
model. All styles store coordinates, velocities, atom IDs and types. See the read data, create atoms, and set
commands for info on how to set these various quantities.

angle bonds and angles bead-spring polymers with

stiffness
. coarse-grain liquids, solids,

atomic only the default values

metals
bond bonds bead-spring polymers
charge charge atomic system with charges
dipole charge and dipole moment system with dipolar particles
electron charge and spin and eradius electronic force field

shape, quaternion for particle orientation, angular

ellipsoid momentum extended aspherical particles
full molecular + charge bio-molecules

line end points, angular velocity rigid bodies

meso rho, e, cv SPH particles

sph q(pressure), density SPH particles

atom_style command 218

http://lammps.sandia.gov

LIGGGHTS Users Manual

molecular bonds, angles, dihedrals, impropers uncharged molecules

peri mass, volume mesocopic Peridynamic models
Zf; Z;’Zao; diameter, mass, angular velocity granular models

tri corner points, angular momentum rigid bodies

wavepacket charge, spin, eradius, etag, cs_re, cs_im AWPMD

All of the styles assign mass to particles on a per-type basis, using the mass command, except for the
finite-size particle styles discussed below. They assign mass on a per-atom basis.

All of the styles define point particles, except the sphere, ellipsoid, electron, peri, wavepacket, line, and tri
styles, which define finite-size particles.

For the sphere style, the particles are spheres and each stores a per-particle diameter and mass. If the diameter
> 0.0, the particle is a finite-size sphere. If the diameter = 0.0, it is a point particle.

For the ellipsoid style, the particles are ellipsoids and each stores a flag which indicates whether it is a
finite-size ellipsoid or a point particle. If it is an ellipsoid, it also stores a shape vector with the 3 diamters of
the ellipsoid and a quaternion 4-vector with its orientation.

For the electron style, the particles representing electrons are 3d Gaussians with a specified position and
bandwidth or uncertainty in position, which is represented by the eradius = electron size.

For the peri style, the particles are spherical and each stores a per-particle mass and volume.

The meso style is for smoothed particle hydrodynamics (SPH) particles which store a density (rho), energy
(e), and heat capacity (cv).

The wavepacket style is similar to electron, but the electrons may consist of several Gaussian wave packets,
summed up with coefficients cs= (cs_re,cs_im). Each of the wave packets is treated as a separate particle in
LAMMPS, wave packets belonging to the same electron must have identical etag values.

For the line style, the particles are idealized line segments and each stores a per-particle mass and length and
orientation (i.e. the end points of the line segment).

For the tri style, the particles are planar triangles and each stores a per-particle mass and size and orientation
(i.e. the corner points of the triangle).

Typically, simulations require only a single (non-hybrid) atom style. If some atoms in the simulation do not
have all the properties defined by a particular style, use the simplest style that defines all the needed properties
by any atom. For example, if some atoms in a simulation are charged, but others are not, use the charge style.
If some atoms have bonds, but others do not, use the bond style.

The only scenario where the hybrid style is needed is if there is no single style which defines all needed
properties of all atoms. For example, if you want dipolar particles which will be torqued and rotate, you would
need to use "atom_style hybrid sphere dipole". When a hybrid style is used, atoms store and communicate the
union of all quantities implied by the individual styles.

LAMMPS can be extended with new atom styles; see this section.

Restrictions:

This command cannot be used after the simulation box is defined by a read data or create _box command.

atom_style command 219

LIGGGHTS Users Manual

The angle, bond, full, and molecular styles are part of the MOLECULAR package. The dipole style is part of
the "dipole" package. The peri style is part of the PERI package for Peridynamics. The electron style is part of
the USER-EFF package for glectronic force fields. The meso style is part of the USER-SPH package for
smoothed particle hydrodyanmics (SPH). See this PDF guide to using SPH in LAMMPS. The wavepacket
style is part of the USER-AWPMD package for the antisymmetrized wave packet MD method. They are only
enabled if LAMMPS was built with that package. See the Making LAMMPS section for more info.

Related commands:

read data, pair_style

Default:

atom_style atomic

atom_style command 220

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style class2 command

bond_style class2/omp command
Syntax:
bond_style class2

Examples:

bond_style class2
bond_coeff 1 1.0 100.0 80.0 80.0

Description:

The class2 bond style uses the potential
=i Tl . N2 Py A)3 i PR e \4
E = Ky(r —rog)*+ Kz(r —ro)° + K4(r — ro)

where 10 is the equilibrium bond distance.
See (Sun) for a description of the COMPASS class2 force field.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ RO (distance)

e K2 (energy/distance”2)
¢ K3 (energy/distance”3)
e K4 (energy/distance”4)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

bond_style class2 command 221

http://lammps.sandia.gov

LIGGGHTS Users Manual

This bond style can only be used if LAMMPS was built with the CLASS2 package. See the Making
LAMMPS section for more info on packages.

Related commands:
bond coeff, delete bonds

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

bond_style class2/omp command 222

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_coeff command

Syntax:
bond_coeff N args

¢ N = bond type (see asterisk form below)
¢ args = coefficients for one or more bond types

Examples:

bond_coeff 5 80.0 1.2

bond_coeff * 30.0 1.5 1
bond_coeff 1*4 30.0 1.5
bond_coeff 1 harmonic 2

0 1.
1.0
0.0

[=)

.0
0 .0

Description:

Specify the bond force field coefficients for one or more bond types. The number and meaning of the
coefficients depends on the bond style. Bond coefficients can also be set in the data file read by the read data
command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple bond types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of bond types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a bond_coeff command can override a previous setting for the same bond type. For example,
these commands set the coeffs for all bond types, then overwrite the coeffs for just bond type 2:

bond_coeff * 100.0 1.2
bond_coeff 2 200.0 1.2

A line in a data file that specifies bond coefficients uses the exact same format as the arguments of the
bond_coeff command in an input script, except that wild-card asterisks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Bond Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

5 80.0 1.2

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond coeff command.

Note that here are also additional bond styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the bond section of this page.

¢ bond style none - turn off bonded interactions
¢ bond style hybrid - define multiple styles of bond interactions

® bond style class2 - COMPASS (class 2) bond

® bond style fene - FENE (finite-extensible non-linear elastic) bond
® bond style fene/expand - FENE bonds with variable size particles

bond_coeff command 223

http://lammps.sandia.gov

LIGGGHTS Users Manual

® bond style harmonic - harmonic bond

® bond style morse - Morse bond

e bond style nonlinear - nonlinear bond

® bond style guartic - breakable quartic bond
® bond_style table - tabulated by bond length

Restrictions:

This command must come after the simulation box is defined by a read data, read restart, or create box
command.

A bond style must be defined before any bond coefficients are set, either in the input script or in a data file.
Related commands:

bond style

Default: none

bond_coeff command 224

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style fene command

bond_style fene/omp command
Syntax:

bond_style fene

Examples:

bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0

Description:

The fene bond style uses the potential

N2 12 6
Ez—[lfmffﬁgln l—(ﬂ;—) + 4e (E) —(E) + €

0

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer
models. The first term is attractive, the 2nd Lennard-Jones term is repulsive. The first term extends to RO, the
maximum extent of the bond. The 2nd term is cutoff at 2°(1/6) sigma, the minimum of the LJ potential.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/distance”2)
¢ RO (distance)

e epsilon (energy)

® sigma (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

bond_style fene command 225

http://lammps.sandia.gov

LIGGGHTS Users Manual

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

You typically should specify special bonds fene or special bonds lj/coul 0 1 1 to use this bond style.
LAMMPS will issue a warning it that's not the case.

Related commands:
bond coeff, delete bonds

Default: none

(Kremer) Kremer, Grest,] Chem Phys, 92, 5057 (1990).

bond_style fene/omp command 226

E

= —0.5KR:In |1 —

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style fene/expand command

bond_style fene/expand/omp command
Syntax:

bond_style fene/expand

Examples:

bond_style fene/expand
bond_coeff 1 30.0 1.5 1.0 1.0 0.5

Description:

The fene/expand bond style uses the potential

p—
b
[
b

(r—A
Ry (r—A) (r—A)

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer
models. The first term is attractive, the 2nd Lennard-Jones term is repulsive.

The fene/expand bond style is similar to fene except that an extra shift factor of delta (positive or negative) is
added to r to effectively change the bead size of the bonded atoms. The first term now extends to RO + delta
and the 2nd term is cutoff at 27(1/6) sigma + delta.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/distance”2)
¢ RO (distance)

¢ epsilon (energy)

¢ sigma (distance)

¢ delta (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

bond_style fene/expand command 227

http://lammps.sandia.gov

LIGGGHTS Users Manual

input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

You typically should specify special bonds fene or special bonds 1j/coul 0 1 1 to use this bond style.
LAMMPS will issue a warning it that's not the case.

Related commands:
bond coeff, delete bonds

Default: none

(Kremer) Kremer, Grest,] Chem Phys, 92, 5057 (1990).

bond_style fene/expand/omp command 228

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic command

bond_style harmonic/omp command
Syntax:
bond_style harmonic

Examples:

bond_style harmonic
bond_coeff 5 80.0 1.2

Description:

The harmonic bond style uses the potential
E = K(r — o)

where 10 is the equilibrium bond distance. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/distance”2)
¢ 10 (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
bond coeff, delete bonds

bond_style harmonic command 229

http://lammps.sandia.gov

LIGGGHTS Users Manual

Default: none

bond_style harmonic/omp command 230

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic/shift command

bond_style harmonic/shift/omp command
Syntax:
bond_style harmonic/shift

Examples:

bond_style harmonic/shift
bond_coeff 5 10.0 0.5 1.0

Description:

The harmonic/shift bond style is a shifted harmonic bond that uses the potential

Umin
F = — [(1 — 7"0)3 — (re — 7"0)“)]
(' 0 ’c)'

where 10 is the equilibrium bond distance, and rc the critical distance. The potential is -Umin at rO and zero at

rc. The spring constant is k = Umin / [2 (r0-rc)"2].

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ Umin (energy)
¢ 10 (distance)

e rc (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making L AMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

bond_style harmonic/shift command 231

http://lammps.sandia.gov

LIGGGHTS Users Manual

This bond style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
bond coeff, delete_bonds, bond harmonic

Default: none

bond_style harmonic/shift/omp command 232

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic/shift/cut command

bond_style harmonic/shift/cut/omp command

Syntax:
bond_style harmonic/shift/cut
Examples:

bond_style harmonic/shift/cut
bond_coeff 5 10.0 0.5 1.0

Description:
The harmonic/shift/cut bond style is a shifted harmonic bond that uses the potential
Umain

B = s [t =) = (re=ro)’]

where 10 is the equilibrium bond distance, and rc the critical distance. The bond potential is zero for distances
r > rc. The potential is -Umin at 1O and zero at rc. The spring constant is k = Umin / [2 (rO-rc)"2].

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ Umin (energy)
¢ 10 (distance)
¢ rc (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

bond_style harmonic/shift/cut command 233

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:
bond coeff, delete_bonds, bond harmonic, bond harmonicshift

Default: none

bond_style harmonic/shift/cut/omp command 234

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style hybrid command
Syntax:
bond_style hybrid stylel style2 ...
¢ stylel,style2 = list of one or more bond styles

Examples:

bond_style hybrid harmonic fene
bond_coeff 1 harmonic 80.0 1.2
bond_coeff 2* fene 30.0 1.5 1.0 1.0

Description:

The hybrid style enables the use of multiple bond styles in one simulation. A bond style is assigned to each
bond type. For example, bonds in a polymer flow (of bond type 1) could be computed with a fene potential
and bonds in the wall boundary (of bond type 2) could be computed with a harmonic potential. The
assignment of bond type to style is made via the bond coeff command or in the data file.

In the bond_coeff commands, the name of a bond style must be added after the bond type, with the remaining
coefficients being those appropriate to that style. In the example above, the 2 bond_coeff commands set bonds
of bond type 1 to be computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other bond
types (2-N) are computed with a fene potential with coefficients 30.0, 1.5, 1.0, 1.0 for K, RO, epsilon, sigma.

If bond coefficients are specified in the data file read via the read data command, then the same rule applies.
E.g. "harmonic" or "fene" must be added after the bond type, for each line in the "Bond Coeffs" section, e.g.

Bond Coeffs

1 harmonic 80.

0 2
2 fene 30.0 1.5 0

1.
1.0 1.0

A bond style of none with no additional coefficients can be used in place of a bond style, either in a input
script bond_coeff command or in the data file, if you desire to turn off interactions for specific bond types.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Unlike other bond styles, the hybrid bond style does not store bond coefficient info for individual sub-styles in
a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify bond_coeff
commands.

Related commands:

bond coeff, delete bonds

Default: none

bond_style hybrid command 235

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style morse command

bond_style morse/omp command
Syntax:

bond_style morse

Examples:

bond_style morse
bond_coeff 5 1.0 2.0 1.2

Description:

The morse bond style uses the potential

E=D[1 - o]

where 10 is the equilibrium bond distance, alpha is a stiffness parameter, and D determines the depth of the
potential well.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ D (energy)
¢ alpha (inverse distance)
¢ 10 (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

bond_style morse command 236

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:
bond coeff, delete bonds

Default: none

bond_style morse/omp command 237

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style none command
Syntax:

bond_style none

Examples:

bond_style none

Description:

Using a bond style of none means bond forces are not computed, even if pairs of bonded atoms were listed in
the data file read by the read data command.

Restrictions: none
Related commands: none

Default: none

bond_style none command 238

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style nonlinear command

bond_style nonlinear/omp command
Syntax:
bond_style nonlinear

Examples:

bond_style nonlinear
bond_coeff 2 100.0 1.1 1.4

Description:

The nonlinear bond style uses the potential

e(r — ro)?2

[\ = (r = ro)’]

E =

to define an anharmonic spring (Rector) of equilibrium length r0 and maximum extension lamda.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

e epsilon (energy)
¢ 10 (distance)
¢ Jamda (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

bond_style nonlinear command 239

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:
bond coeff, delete bonds

Default: none

(Rector) Rector, Van Swol, Henderson, Molecular Physics, 82, 1009 (1994).

bond_style nonlinear/omp command 240

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style quartic command

bond_style quartic’omp command
Syntax:

bond_style quartic

Examples:

bond_style quartic
bond_coeff 2 1200 -0.55 0.25 1.3 34.6878

Description:

The quartic bond style uses the potential

9 T 12 T ¥
E = K(r — R)*(r — R.— By)(r — R — By) + Uy + 4e (_) < (_) i

to define a bond that can be broken as the simulation proceeds (e.g. due to a polymer being stretched). The
sigma and epsilon used in the LJ portion of the formula are both set equal to 1.0 by LAMMPS.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/distance”2)
¢ B1 (distance)

¢ B2 (distance)

¢ Rc (distance)

¢ UO (energy)

This potential was constructed to mimic the FENE bond potential for coarse-grained polymer chains. When
monomers with sigma = epsilon = 1.0 are used, the following choice of parameters gives a quartic potential
that looks nearly like the FENE potential: K = 1200, B1 =-0.55, B2 = 0.25, Rc = 1.3, and UO = 34.6878.
Different parameters can be specified using the bond coeff command, but you will need to choose them
carefully so they form a suitable bond potential.

Rc is the cutoff length at which the bond potential goes smoothly to a local maximum. If a bond length ever
becomes > Rc, LAMMPS "breaks" the bond, which means two things. First, the bond potential is turned off
by setting its type to 0, and is no longer computed. Second, a pairwise interaction between the two atoms is
turned on, since they are no longer bonded.

LAMMPS does the second task via a computational sleight-of-hand. It subtracts the pairwise interaction as
part of the bond computation. When the bond breaks, the subtraction stops. For this to work, the pairwise
interaction must always be computed by the pair_style command, whether the bond is broken or not. This
means that special bonds must be set to 1,1,1, as indicated as a restriction below.

bond_style quartic command 241

http://lammps.sandia.gov

LIGGGHTS Users Manual

Note that when bonds are dumped to a file via the dump local command, bonds with type 0 are not included.
The delete_bonds command can also be used to query the status of broken bonds or permanently delete them,

e.g.:

delete_bonds all stats
delete_bonds all bond 0 remove

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

The guartic style requires that special bonds parameters be set to 1,1,1. Three- and four-body interactions
(angle, dihedral, etc) cannot be used with quartic bonds.

Related commands:
bond coeff, delete bonds

Default: none

bond_style quartic’omp command 242

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style command
Syntax:
bond_style style args

¢ style = none or hybrid or class2 or fene or fene/expand or harmonic or morse or nonlinear or quartic

args = none for any style except hybrid
hybrid args = list of one or more styles
Examples:

bond_style harmonic
bond_style fene
bond_style hybrid harmonic fene

Description:

Set the formula(s) LAMMPS uses to compute bond interactions between pairs of atoms. In LAMMPS, a bond
differs from a pairwise interaction, which are set via the pair_style command. Bonds are defined between
specified pairs of atoms and remain in force for the duration of the simulation (unless the bond breaks which
is possible in some bond potentials). The list of bonded atoms is read in by a read data or read restart
command from a data or restart file. By contrast, pair potentials are typically defined between all pairs of
atoms within a cutoff distance and the set of active interactions changes over time.

Hybrid models where bonds are computed using different bond potentials can be setup using the hybrid bond
style.

The coefficients associated with a bond style can be specified in a data or restart file or via the bond coeff
command.

All bond potentials store their coefficient data in binary restart files which means bond_style and bond coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read restart
command for details on how to do this. The one exception is that bond_style hybrid only stores the list of
sub-styles in the restart file; bond coefficients need to be re-specified.

IMPORTANT NOTE: When both a bond and pair style is defined, the special bonds command often needs to
be used to turn off (or weight) the pairwise interaction that would otherwise exist between 2 bonded atoms.

In the formulas listed for each bond style, r is the distance between the 2 atoms in the bond.

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond coeff command.

Note that there are also additional bond styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the bond section of this page.

¢ bond style none - turn off bonded interactions
¢ bond style hybrid - define multiple styles of bond interactions

® bond style class2 - COMPASS (class 2) bond
® bond style fene - FENE (finite-extensible non-linear elastic) bond

bond_style command 243

http://lammps.sandia.gov

LIGGGHTS Users Manual

® bond style fene/expand - FENE bonds with variable size particles
® bond style harmonic - harmonic bond

® bond style morse - Morse bond

® bond style nonlinear - nonlinear bond

® bond style guartic - breakable quartic bond

® bond_style table - tabulated by bond length

Restrictions:

Bond styles can only be set for atom styles that allow bonds to be defined.

Most bond styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
bond potentials tell if it is part of a package.

Related commands:

bond coeff, delete_bonds

Default:

bond_style none

bond_style command 244

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style table command

bond_style table/omp command

Syntax:
bond_style table style N

¢ style = linear or spline = method of interpolation
¢ N =use N values in table

Examples:

bond_style table linear 1000
bond_coeff 1 file.table ENTRY1

Description:

Style table creates interpolation tables of length N from bond potential and force values listed in a file(s) as a
function of bond length. The files are read by the bond coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
force values at each of N distances. During a simulation, these tables are used to interpolate energy and force
values as needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the bond length is used to find 2 surrounding table values from which an energy or force
is computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table.
The bond length is used to find the appropriate set of coefficients which are used to evaluate a cubic
polynomial which computes the energy or force.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above.

¢ filename
® keyword

The filename specifies a file containing tabulated energy and force values. The keyword specifies a section of
the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):
Bond potential for harmonic (one or more comment or blank lines)

HAM
N 101 FP 0 0 EQ 0.5

(keyword is the first text on line)
(N, FP, EQ parameters)
(blank line)
1 0.00 338.0000 1352.0000 (index, bond-length, energy, force)
2 0.01 324.6152 1324.9600

101 1.00 338.0000 -1352.0000

bond_style table command 245

http://lammps.sandia.gov

LIGGGHTS Users Manual

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the bond coeff
command. The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword
followed by one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the bond style table command. Let Ntable = N in the bond_style command,
and Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines
using the Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and
force values at Ntable different points. The resulting tables of length Ntable are then used as described above,
when computing energy and force for individual bond lengths. This means that if you want the interpolation
tables of length Ntable to match exactly what is in the tabulated file (with effectively no preliminary
interpolation), you should set Ntable = Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the derivatives
of the force at the innermost and outermost bond lengths. These values are needed by the spline construction
routines. If not specified by the "FP" parameter, they are estimated (less accurately) by the first two and last
two force values in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium bond length, which is used,
for example, by the fix shake command. If not used, the equilibrium bond length is set to 0.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is the bond length r (in distance units), the 3rd value is the energy (in energy units), and
the 4th is the force (in force units). The bond lengths must range from a LO value to a HI value, and increase
from one line to the next. If the actual bond length is ever smaller than the LO value or larger than the HI
value, then the bond energy and force is evaluated as if the bond were the LO or HI length.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

bond_style table/omp command 246

LIGGGHTS Users Manual

bond coeff, delete bonds

Default: none

bond_style table/omp command 247

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

boundary command

Syntax:
boundary x y z

® X,y,Z = p or s or f or m, one or two letters

p is periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value

Examples:

boundary p p £
boundary p fs p
boundary s f fm

Description:

Set the style of boundaries for the global simulation box in each dimension. A single letter assigns the same
style to both the lower and upper face of the box. Two letters assigns the first style to the lower face and the
second style to the upper face. The initial size of the simulation box is set by the read data, read restart, or
create_box commands.

The style p means the box is periodic, so that particles interact across the boundary, and they can exit one end
of the box and re-enter the other end. A periodic dimension can change in size due to constant pressure
boundary conditions or box deformation (see the fix npt and fix deform commands). The p style must be
applied to both faces of a dimension.

The styles f, s, and m mean the box is non-periodic, so that particles do not interact across the boundary and
do not move from one side of the box to the other. For style f, the position of the face is fixed. If an atom
moves outside the face it may be lost. For style s, the position of the face is set so as to encompass the atoms
in that dimension (shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is
bounded by the value specified in the data or restart file or set by the create box command. For example, if
the upper z face has a value of 50.0 in the data file, the face will always be positioned at 50.0 or above, even if
the maximum z-extent of all the atoms becomes less than 50.0.

For triclinic (non-orthogonal) simulation boxes, if the 2nd dimension of a tilt factor (e.g. y for xy) is periodic,
then the periodicity is enforced with the tilt factor offset. If the 1st dimension is shrink-wrapped, then the
shrink wrapping is applied to the tilted box face, to encompass the atoms. E.g. for a positive xy tilt, the xlo
and xhi faces of the box are planes tilting in the +y direction as y increases. These tilted planes are
shrink-wrapped around the atoms to determine the x extent of the box.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

IMPORTANT NOTE: If mesh walls (e.g. fix mesh/surface) are used, not only atom positions, but also the
mesh nodes are used for setting the boundaries.

Restrictions:

boundary command 248

http://lammps.sandia.gov

LIGGGHTS Users Manual

This command cannot be used after the simulation box is defined by a read data or create _box command or
read restart command. See the change box command for how to change the simulation box boundaries after
it has been defined.

For 2d simulations, the z dimension must be periodic.

Related commands:

See the thermo modify command for a discussion of lost atoms.

Default:

boundary p p p

boundary command 249

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

change_box command
Syntax:
change_box group-ID parameter args ... keyword args

¢ group-ID = ID of group of atoms to (optionally) displace
® one or more parameter/arg pairs may be appended

parameter = X Or y Or z Or Xy Or Xz Or yz or boundary or ortho or triclinic or set or rema
X, y, z args = style value(s)
style = final or delta or scale or volume
final values = lo hi
lo hi = box boundaries after displacement (distance units)
delta values = dlo dhi
dlo dhi = change in box boundaries after displacement (distance units)
scale values = factor
factor = multiplicative factor for change in box length after displacement
volume value = none = adjust this dim to preserve volume of system
Xy, Xz, yz args = style value
style = final or delta
final value = tilt

tilt = tilt factor after displacement (distance units)
delta value = dtilt
dtilt = change in tilt factor after displacement (distance units)
boundary args = X y z

X,y,z = p or s or £ or m, one or two letters
p is periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value
ortho args = none = change box to orthogonal
(triclinic args = none = change box to triclinic
set args = none = store state of current box
remap args = none = remap atom coords from last saved state to current box

e zero or more keyword/value pairs may be appended
¢ keyword = units

units value = lattice or box
lattice = distances are defined in lattice units
box = distances are defined in simulation box units

Examples:

change_box all xy final -2.0 z final 0.0 5.0 boundary p p f remap units box
change_box all x scale 1.1 y volume z volume remap

Description:

Change the volume and/or shape and/or boundary conditions for the simulation box. Orthogonal simulation
boxes have 3 adjustable size parameters (X,y,z). Triclinic (non-orthogonal) simulation boxes have 6 adjustable
size/shape parameters (X,y,z,Xy,Xz,yz). Any or all of them can be adjusted independently by this command.
Thus it can be used to expand or contract a box, or to apply a shear strain to a non-orthogonal box. It can also
be used to change the boundary conditions for the simulation box, similar to the boundary command.

The size and shape of the initial simulation box are specified by the create box or read data or read restart

command used to setup the simulation. The size and shape may be altered by subsequent runs, e.g. by use of
the fix npt or fix deform commands. The create box, read data, and read restart commands also determine

change_box command 250

http://lammps.sandia.gov

LIGGGHTS Users Manual

whether the simulation box is orthogonal or triclinic and their doc pages explain the meaning of the xy,xz,yz
tilt factors.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

The keywords used in this command are applied sequentially to the simulation box and the atoms in it, in the
order specified.

Before the sequence of keywords are invoked, the current box size/shape is stored, in case a remap keyword is
used to map the atom coordinates from a previously stored box size/shape to the current one.

After all the keywords have been processed, any shrink-wrap boundary conditions are invoked (see the
boundary command) which may change simulation box boundaries, and atoms are migrated to new owning
processors.

IMPORTANT NOTE: Unlike the earlier "displace_box" version of this command, atom remapping is NOT
performed by default. This command allows remapping to be done in a more general way, exactly when you
specify it (zero or more times) in the sequence of transformations. Thus if you do not use the remap keyword,
atom coordinates will not be changed even if the box size/shape changes. If a uniformly strained state is
desired, the remap keyword should be specified.

IMPORTANT NOTE: It is possible to lose atoms with this command. E.g. by changing the box without
remapping the atoms, and having atoms end up outside of non-periodic boundaries. It is also possible to alter
bonds between atoms straddling a boundary in bad ways. E.g. by converting a boundary from periodic to
non-periodic. It is also possible when remapping atoms to put them (nearly) on top of each other. E.g. by
converting a boundary from non-periodic to periodic. All of these will typically lead to bad dynamics and/or
generate error messages.

IMPORTANT NOTE: The simulation box size/shape can be changed by arbitrarily large amounts by this
command. This is not a problem, except that the mapping of processors to the simulation box is not changed
from its initial 3d configuration; see the processors command. Thus, if the box size/shape changes
dramatically, the mapping of processors to the simulation box may not end up as optimal as the initial
mapping attempted to be.

For the x, y, and z parameters, this is the meaning of their styles and values.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or
box distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can
be in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if
the initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0
means compression.

The volume style changes the specified dimension in such a way that the overall box volume remains constant
with respect to the operation performed by the preceding keyword. The volume style can only be used
following a keyword that changed the volume, which is any of the x, y, z keywords. If the preceding keyword
"key" had a volume style, then both it and the current keyword apply to the keyword preceding "key". I.e. this
sequence of keywords is allowed:

change_box all x scale 1.1 y volume z volume

change_box command 251

LIGGGHTS Users Manual

The volume style changes the associated dimension so that the overall box volume is unchanged relative to its
value before the preceding keyword was invoked.

If the following command is used, then the z box length will shrink by the same 1.1 factor the x box length
was increased by:

change_box all x scale 1.1 z volume

If the following command is used, then the y,z box lengths will each shrink by sqrt(1.1) to keep the volume
constant. In this case, the y,z box lengths shrink so as to keep their relative aspect ratio constant:

change_box all"x scale 1.1 y volume z volume

If the following command is used, then the final box will be a factor of 10% larger in x and y, and a factor of
21% smaller in z, so as to keep the volume constant:

change_box all x scale 1.1 z volume y scale 1.1 z volume

IMPORTANT NOTE: For solids or liquids, when one dimension of the box is expanded, it may be physically
undesirable to hold the other 2 box lengths constant since that implies a density change. For solids, adjusting
the other dimensions via the volume style may make physical sense (just as for a liquid), but may not be
correct for materials and potentials whose Poisson ratio is not 0.5.

For the scale and volume styles, the box length is expanded or compressed around its mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt
factors of a triclinic box does not change its volume.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the
discussion of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

All of these styles change the xy, xz, yz tilt factors. In LAMMPS, tilt factors (xy,xz,yz) for triclinic boxes are
required to be no more than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12,
then the x box length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz and yz must be
between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5
(as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all equivalent. Any tilt factor
specified by this command must be within these limits.

The boundary keyword takes arguments that have exactly the same meaning as they do for the boundary
command. In each dimension, a single letter assigns the same style to both the lower and upper face of the
box. Two letters assigns the first style to the lower face and the second style to the upper face.

The style p means the box is periodic; the other styles mean non-periodic. For style f, the position of the face
is fixed. For style s, the position of the face is set so as to encompass the atoms in that dimension
(shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is bounded by the
current box edge in that dimension, so that the box will become no smaller. See the boundary command for
more explanation of these style options.

Note that the "boundary" command itself can only be used before the simulation box is defined via a

read data or create box or read restart command. This command allows the boundary conditions to be
changed later in your input script. Also note that the read restart will change boundary conditions to match
what is stored in the restart file. So if you wish to change them, you should use the change_box command

change_box command 252

LIGGGHTS Users Manual

after the read_restart command.

The ortho and triclinic keywords convert the simulation box to be orthogonal or triclinic (non-orthongonal).
See this section for a discussion of how non-orthongal boxes are represented in LAMMPS.

The simulation box is defined as either orthogonal or triclinic when it is created via the create box, read data,
or read restart commands.

These keywords allow you to toggle the existing simulation box from orthogonal to triclinic and vice versa.
For example, an initial equilibration simulation can be run in an orthogonal box, the box can be toggled to
triclinic, and then a non-equilibrium MD (NEMD) simulation can be run with deformation via the fix deform
command.

If the simulation box is currently triclinic and has non-zero tilt in Xy, yz, or Xz, then it cannot be converted to
an orthogonal box.

The set keyword saves the current box size/shape. This can be useful if you wish to use the remap keyword
more than once or if you wish it to be applied to an intermediate box size/shape in a sequence of keyword
operations. Note that the box size/shape is saved before any of the keywords are processed, i.e. the box
size/shape at the time the create_box command is encountered in the input script.

The remap keyword remaps atom coordinates from the last saved box size/shape to the current box state. For
example, if you stretch the box in the x dimension or tilt it in the xy plane via the x and xy keywords, then the
remap commmand will dilate or tilt the atoms to conform to the new box size/shape, as if the atoms moved
with the box as it deformed.

Note that this operation is performed without regard to periodic boundaries. Also, any shrink-wrapping of
non-periodic boundaries (see the boundary command) occurs after all keywords, including this one, have been

processed.

Only atoms in the specified group are remapped.

The units keyword determines the meaning of the distance units used to define various arguments. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing.

Restrictions:

If you use the ortho or triclinic keywords, then at the point in the input script when this command is issued, no
dumps can be active, nor can a fix ave/spatial or fix deform be active. This is because these commands test
whether the simulation box is orthogonal when they are first issued. Note that these commands can be used in
your script before a change_box command is issued, so long as an undump or unfix command is also used to
turn them off.

Related commands:
fix deform, boundary
Default:

The option default is units = lattice.

change_box command 253

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

clear command

Syntax:
clear
Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:
This command deletes all atoms, restores all settings to their default values, and frees all memory allocated by
LAMMPS. Once a clear command has been executed, it is as if LAMMPS were starting over, with only the

exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status
(log command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

clear command 254

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

communicate command

Syntax:
communicate style keyword value ...

e style = single or multi
e zero or more keyword/value pairs may be appended
¢ keyword = cutoff or group or vel

cutoff value = Rcut (distance units) = communicate atoms from this far away
group value = group-ID = only communicate atoms in the group
vel value = yes or no = do or do not communicate velocity info with ghost atoms

Examples:

communicate multi

communicate multi group solvent
communicate single vel yes
communicate single cutoff 5.0 vel yes

Description:

This command sets the style of inter-processor communication that occurs each timestep as atom coordinates
and other properties are exchanged between neighboring processors and stored as properties of ghost atoms.

The default style is single which means each processor acquires information for ghost atoms that are within a
single distance from its sub-domain. The distance is the maximum of the neighbor cutoff for all atom type
pairs.

For many systems this is an efficient algorithm, but for systems with widely varying cutoffs for different type
pairs, the multi style can be faster. In this case, each atom type is assigned its own distance cutoff for
communication purposes, and fewer atoms will be communicated. See the neighbor multi command for a
neighbor list construction option that may also be beneficial for simulations of this kind.

The cutoff option allows you to set a ghost cutoff distance, which is the distance from the borders of a
processor's sub-domain at which ghost atoms are acquired from other processors. By default the ghost cutoff =
neighbor cutoff = pairwise force cutoff + neighbor skin. See the neighbor command for more information
about the skin distance. If the specified Rcut is greater than the neighbor cutoff, then extra ghost atoms will be
acquired. If it is smaller, the ghost cutoff is set to the neighbor cutoff.

These are simulation scenarios in which it may be useful to set a ghost cutoff > neighbor cutoff:

¢ a single polymer chain with bond interactions, but no pairwise interactions
¢ bonded interactions (e.g. dihedrals) extend further than the pairwise cutoff
¢ ghost atoms beyond the pairwise cutoff are needed for some computation

In the first scenario, a pairwise potential may not be defined. Thus the pairwise neighbor cutoff will be 0.0.
But ghost atoms are still needed for computing bond, angle, etc interactions between atoms on different
processors. The appropriate ghost cutoff depends on the newton bond setting. For newton bond off, the
distance needs to be the furthest distance between any two atoms in the bond, angle, etc. E.g. the distance
between 1-4 atoms in a dihedral. For newton bond on, the distance between the central atom in the bond,
angle, etc and any other atom is sufficient. E.g. the distance between 2-4 atoms in a dihedral.

communicate command 255

http://lammps.sandia.gov

LIGGGHTS Users Manual

In the second scenario, a pairwise potential is defined, but its neighbor cutoff is not sufficiently long enough
to enable bond, angle, etc terms to be computed. As in the previous scenario, an appropriate ghost cutoff
should be set.

In the last scenario, a fix or compute or pairwise potential needs to calculate with ghost atoms beyond the
normal pairwise cutoff for some computation it performs (e.g. locate neighbors of ghost atoms in a multibody
pair potential). Setting the ghost cutoff appropriately can insure it will find the needed atoms.

The group option will limit communication to atoms in the specified group. This can be useful for models
where no ghost atoms are needed for some kinds of particles. All atoms (not just those in the specified group)
will still migrate to new processors as they move. The group specified with this option must also be specified
via the atom modify first command.

The vel option enables velocity information to be communicated with ghost particles. Depending on the
atom_style, velocity info includes the translational velocity, angular velocity, and angular momentum of a
particle. If the vel option is set to yes, then ghost atoms store these quantities; if no then they do not. The yes
setting is needed by some pair styles which require the velocity state of both the I and J particles to compute a
pairwise L,J interaction.

Note that if the fix deform command is being used with its "remap v" option enabled, then the velocities for
ghost atoms (in the fix deform group) mirrored across a periodic boundary will also include components due
to any velocity shift that occurs across that boundary (e.g. due to dilation or shear).

Restrictions: none

Related commands:

neighbor

Default:

The default settings are style = single, group = all, cutoff = 0.0, vel = no. The cutoff default of 0.0 means that
ghost cutoff = neighbor cutoff = pairwise force cutoff + neighbor skin.

communicate command 256

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute command

Syntax:
compute ID group-ID style args

¢ ID = user-assigned name for the computation

¢ group-ID = ID of the group of atoms to perform the computation on
¢ style = one of a list of possible style names (see below)

¢ args = arguments used by a particular style

Examples:

compute 1 all temp
compute newtemp flow temp/partial 1 1 0
compute 3 all ke/atom

Description:

Define a computation that will be performed on a group of atoms. Quantities calculated by a compute are
instantaneous values, meaning they are calculated from information about atoms on the current timestep or
iteration, though a compute may internally store some information about a previous state of the system.
Defining a compute does not perform a computation. Instead computes are invoked by other LAMMPS
commands as needed, e.g. to calculate a temperature needed for a thermostat fix or to generate
thermodynamic or dump file output. See this howto section for a summary of various LAMMPS output
options, many of which involve computes.

The ID of a compute can only contain alphanumeric characters and underscores.

Computes calculate one of three styles of quantities: global, per-atom, or local. A global quantity is one or
more system-wide values, e.g. the temperature of the system. A per-atom quantity is one or more values per
atom, e.g. the kinetic energy of each atom. Per-atom values are set to 0.0 for atoms not in the specified
compute group. Local quantities are calculated by each processor based on the atoms it owns, but there may
be zero or more per atom, e.g. a list of bond distances. Computes that produce per-atom quantities have the
word "atom" in their style, e.g. ke/atom. Computes that produce local quantities have the word "local" in their
style, e.g. bond/local. Styles with neither "atom" or "local" in their style produce global quantities.

Note that a single compute produces either global or per-atom or local quantities, but never more than one of
these.

Global, per-atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for each compute describes the style and kind of values it produces, e.g. a
per-atom vector. Some computes produce more than one kind of a single style, e.g. a global scalar and a
global vector.

When a compute quantity is accessed, as in many of the output commands discussed below, it can be
referenced via the following bracket notation, where ID is the ID of the compute:

c_ID entire scalar, vector, or array

c_ID[I] |one element of vector, one column of array

c_ID[I][J] |one element of array

compute command 257

http://lammps.sandia.gov

LIGGGHTS Users Manual

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array ->
vector). Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar
compute values as input can also process elements of a vector or array.

Note that commands and yariables which use compute quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
compute quantity as c_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LAMMPS, the values generated by a compute can be used in several ways:

¢ The results of computes that calculate a global temperature or pressure can be used by fixes that do
thermostatting or barostatting or when atom velocities are created.

¢ Global values can be output via the thermo_style custom or fix ave/time command. Or the values can
be referenced in a variable equal or variable atom command.

¢ Per-atom values can be output via the dump custom command or the fix ave/spatial command. Or
they can be time-averaged via the fix ave/atom command or reduced by the compute reduce
command. Or the per-atom values can be referenced in an atom-style variable.

¢ | ocal values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command, or output by the dump local command.

The results of computes that calculate global quantities can be either "intensive" or "extensive" values.
Intensive means the value is independent of the number of atoms in the simulation, e.g. temperature.
Extensive means the value scales with the number of atoms in the simulation, e.g. total rotational kinetic
energy. Thermodynamic output will normalize extensive values by the number of atoms in the system,
depending on the "thermo_modify norm" setting. It will not normalize intensive values. If a compute value is
accessed in another way, e.g. by a variable, you may want to know whether it is an intensive or extensive
value. See the doc page for individual computes for further info.

LAMMPS creates its own computes internally for thermodynamic output. Three computes are always created,

named "thermo_temp", "thermo_press", and "thermo_pe", as if these commands had been invoked in the input
script:

compute thermo_temp all temp
compute thermo_press all pressure thermo_temp
compute thermo_pe all pe

Additional computes for other quantities are created if the thermo style requires it. See the documentation for
the thermo_style command.

Fixes that calculate temperature or pressure, i.e. for thermostatting or barostatting, may also create computes.
These are discussed in the documentation for specific fix commands.

In all these cases, the default computes LAMMPS creates can be replaced by computes defined by the user in
the input script, as described by the thermo modify and fix modify commands.

Properties of either a default or user-defined compute can be modified via the compute modify command.
Computes can be deleted with the uncompute command.

Code for new computes can be added to LAMMPS (see this section of the manual) and the results of their
calculations accessed in the various ways described above.

Each compute style has its own doc page which describes its arguments and what it does. Here is an
alphabetic list of compute styles available in LAMMPS:

compute command 258

LIGGGHTS Users Manual

¢ angle/local - theta and energy of each angle

e atom/molecule - sum per-atom properties for each molecule

¢ bond/local - distance and energy of each bond

e centro/atom - centro-symmetry parameter for each atom

e cluster/atom - cluster ID for each atom

® cna/atom - common neighbor analysis (CNA) for each atom

® com - center-of-mass of group of atoms

® com/molecule - center-of-mass for each molecule

® coord/atom - coordination number for each atom

e damage/atom - Peridynamic damage for each atom

e dihedral/local - angle of each dihedral

e displace/atom - displacement of each atom

e erotate/asphere - rotational energy of aspherical particles

e erotate/sphere - rotational energy of spherical particles

¢ event/displace - detect event on atom displacement

® group/group - energy/force between two groups of atoms

e gyration - radius of gyration of group of atoms

e gyration/molecule - radius of gyration for each molecule

¢ heat/flux - heat flux through a group of atoms

e improper/local - angle of each improper

e ke - translational kinetic energy

e ke/atom - kinetic energy for each atom

® msd - mean-squared displacement of group of atoms

e msd/molecule - mean-squared displacement for each molecule

® pair - values computed by a pair style

e pair/local - distance/energy/force of each pairwise interaction

® pe - potential energy

® pe/atom - potential energy for each atom

e pressure - total pressure and pressure tensor

e property/atom - convert atom attributes to per-atom vectors/arrays
e property/local - convert local attributes to localvectors/arrays

e property/molecule - convert molecule attributes to localvectors/arrays
e rdf - radial distribution function g(r) histogram of group of atoms
¢ reduce - combine per-atom quantities into a single global value

¢ reduce/region - same as compute reduce, within a region

e slice - extract values from global vector or array

® stress/atom - stress tensor for each atom

¢ temp - temperature of group of atoms

¢ temp/asphere - temperature of aspherical particles

¢ temp/com - temperature after subtracting center-of-mass velocity
¢ temp/deform - temperature excluding box deformation velocity

¢ temp/partial - temperature excluding one or more dimensions of velocity
¢ temp/profile - temperature excluding a binned velocity profile

e temp/ramp - temperature excluding ramped velocity component
¢ temp/region - temperature of a region of atoms

¢ temp/sphere - temperature of spherical particles

¢ {i - thermodyanmic integration free energy values

There are also additional compute styles submitted by users which are included in the LAMMPS distribution.
The list of these with links to the individual styles are given in the compute section of this page.

There are also additional accelerated compute styles included in the LAMMPS distribution for faster

performance on CPUs and GPUs. The list of these with links to the individual styles are given in the pair
section of this page.

compute command 259

LIGGGHTS Users Manual

Restrictions: none
Related commands:
uncompute, compute modify, fix ave/atom, fix ave/spatial, fix ave/time, fix ave/histo

Default: none

compute command 260

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ackland/atom command
Syntax:
compute ID group-ID ackland/atom

¢ ID, group-ID are documented in compute command
¢ ackland/atom = style name of this compute command

Examples:
compute 1 all ackland/atom
Description:

Defines a computation that calculates the local lattice structure according to the formulation given in

(Ackland).

In contrast to the centro-symmetry parameter this method is stable against temperature boost, because it is
based not on the distance between particles but the angles. Therefore statistical fluctuations are averaged out a
little more. A comparison with the Common Neighbor Analysis metric is made in the paper.

The result is a number which is mapped to the following different lattice structures:

¢ 0 = UNKNOWN

e 1 =BCC
2 =FCC
¢ 3 =HCP
*4=1CO

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of which computes this quantity.-

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

Restrictions:

This compute is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

The per-atom vector values will be unitless since they are the integers defined above.
Related commands:

compute centro/atom

Default: none

compute ackland/atom command 261

http://lammps.sandia.gov

LIGGGHTS Users Manual
(Ackland) Ackland, Jones, Phys Rev B, 73, 054104 (2006).

compute ackland/atom command 262

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute angle/local command

Syntax:
compute ID group-ID angle/local inputl input2 ...

¢ ID, group-ID are documented in compute command
¢ angle/local = style name of this compute command
¢ zero or more keywords may be appended

¢ keyword = theta or eng

theta = tabulate angles
eng = tabulate angle energies

Examples:

compute 1 all angle/local theta
compute 1 all angle/local eng theta

Description:

Define a computation that calculates properties of individual angle interactions. The number of datums
generated, aggregated across all processors, equals the number of angles in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their angles. An angle will only be included if all 3 atoms in the angle are in the specified compute group. Any
angles that have been broken (see the angle style command) by setting their angle type to 0 are not included.
Angles that have been turned off (see the fix shake or delete bonds commands) by setting their angle type
negative are written into the file, but their energy will be 0.0.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, angle output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of angles. If a single keyword is specified, a local vector
is produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

The output for theta will be in degrees. The output for eng will be in energy units.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

compute angle/local command 263

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute atom/molecule command

Syntax:
compute ID group-ID atom/molecule inputl input2

¢ ID, group-ID are documented in compute command

¢ atom/molecule = style name of this compute command
¢ one or more inputs can be listed

¢ input = c_ID, c_ID[N], f_ID, f ID[N], v_name

c_ID = per-atom vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom array calculated by a compute with ID
f_ID = per-atom vector calculated by a fix with ID
f_ID[I] = Ith column of per-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name

Examples:

compute 1 all atom/molecule c_ke c_pe
compute 1 top atom/molecule v_myFormula c_stress3

Description:

Define a calculation that sums per-atom values on a per-molecule basis, one per listed input. The inputs can
computes, fixes, or yariables that generate per-atom quantities. Note that attributes stored by atoms, such as
mass or force, can also be summed on a per-molecule basis, by accessing these quantities via the compute

property/atom command.

Each listed input is operated on independently. Only atoms within the specified group contribute to the
per-molecule sum. Note that compute or fix inputs define their own group which may affect the quantities
they return. For example, if a compute is used as an input which generates a per-atom vector, it will generate
values of 0.0 for atoms that are not in the group specified for that compute.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

If an input begins with "c_", a compute ID must follow which has been previously defined in the input script
and which generates per-atom quantities. See the individual compute doc page for details. If no bracketed
integer is appended, the vector calculated by the compute is used. If a bracketed interger is appended, the Ith
column of the array calculated by the compute is used. Users can also write code for their own compute styles
and add them to LAMMPS.

If an input begins with "f_", a fix ID must follow which has been previously defined in the input script and
which generates per-atom quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute atom/molecule
references the values, else an error results. If no bracketed integer is appended, the vector calculated by the fix
is used. If a bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can
also write code for their own fix style and add them to LAMMPS.

If an input begins with "v_", a variable name must follow which has been previously defined in the input
script. It must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and
various per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a

compute atom/molecule command 264

http://lammps.sandia.gov

LIGGGHTS Users Manual

very general means of generating per-atom quantities to sum on a per-molecule basis.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length
of the vector or number of rows in the array is the number of molecules. If a single input is specified, a global
vector is produced. If two or more inputs are specified, a global array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses global values
from a compute as input. See this section for an overview of LAMMPS output options.

All the vector or array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none

Related commands:

compute, fix, variable

Default: none

compute atom/molecule command 265

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute bond/local command

Syntax:
compute ID group-ID bond/local inputl input2

¢ ID, group-ID are documented in compute command
¢ bond/local = style name of this compute command
¢ zero or more keywords may be appended

¢ keyword = dist or eng

dist = tabulate bond distances
eng = tablutate bond energies

Examples:

compute 1 all bond/local eng
compute 1 all bond/local dist eng

Description:

Define a computation that calculates properties of individual bond interactions. The number of datums
generated, aggregated across all processors, equals the number of bonds in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their bonds. A bond will only be included if both atoms in the bond are in the specified compute group. Any
bonds that have been broken (see the bond style command) by setting their bond type to 0 are not included.
Bonds that have been turned off (see the fix shake or delete bonds commands) by setting their bond type
negative are written into the file, but their energy will be 0.0.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, bond output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Here is an example of how to do this:

compute 1 all property/local batoml batom2 btype
compute 2 all bond/local dist eng
dump 1 all local 1000 tmp.dump index c_11 c_12 c_13 c_21 c_22

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of bonds. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

The output for dist will be in distance units. The output for eng will be in energy units.

Restrictions: none

compute bond/local command 266

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:

dump local, compute property/local

Default: none

compute bond/local command 267

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute centro/atom command

Syntax:
compute ID group—-ID centro/atom lattice

¢ ID, group-ID are documented in compute command
® centro/atom = style name of this compute command
e lattice = fcc or bee or N = # of neighbors per atom to include

Examples:
compute 1 all centro/atom fcc

compute 1 all centro/atom 8
Description:

Define a computation that calculates the centro-symmetry parameter for each atom in the group. In solid-state
systems the centro-symmetry parameter is a useful measure of the local lattice disorder around an atom and
can be used to characterize whether the atom is part of a perfect lattice, a local defect (e.g. a dislocation or
stacking fault), or at a surface.

The value of the centro-symmetry parameter will be 0.0 for atoms not in the specified compute group.

This parameter is computed using the following formula from (Kelchner)

N/2 |
CS =) |Ri+ Riinypaf?

=1

where the N nearest neighbors or each atom are identified and Ri and Ri+N/2 are vectors from the central
atom to a particular pair of nearest neighbors. There are N*(N-1)/2 possible neighbor pairs that can contribute
to this formula. The quantity in the sum is computed for each, and the N/2 smallest are used. This will
typically be for pairs of atoms in symmetrically opposite positions with respect to the central atom; hence the
i+N/2 notation.

N is an input parameter, which should be set to correspond to the number of nearest neighbors in the
underlying lattice of atoms. If the keyword fcc or bec is used, N is set to 12 and 8 respectively. More
generally, N can be set to a positive, even integer.

For an atom on a lattice site, surrounded by atoms on a perfect lattice, the centro-symmetry parameter will be
0. It will be near 0 for small thermal perturbations of a perfect lattice. If a point defect exists, the symmetry is
broken, and the parameter will be a larger positive value. An atom at a surface will have a large positive
parameter. If the atom does not have N neighbors (within the potential cutoff), then its centro-symmetry
parameter is set to 0.0.

Only atoms within the cutoff of the pairwise neighbor list are considered as possible neighbors. Atoms not in
the compute group are included in the N neighbors used in this calculation.

compute centro/atom command 268

http://lammps.sandia.gov

LIGGGHTS Users Manual

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each with a centro/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The per-atom vector values are unitless values >= 0.0. Their magnitude depends on the lattice style due to the
number of contibuting neighbor pairs in the summation in the formula above. And it depends on the local
defects surrounding the central atom, as described above.

Here are typical centro-symmetry values, from a a nanoindentation simulation into gold (FCC). These were
provided by Jon Zimmerman (Sandia):

Bulk lattice = 0

Dislocation core ~ 1.0 (0.5 to 1.25)
Stacking faults ~ 5.0 (4.0 to 6.0)
Free surface ~ 23.0

These values are *not* normalized by the square of the lattice parameter. If they were, normalized values
would be:

Bulk lattice = 0

Dislocation core ~ 0.06 (0.03 to 0.075)
Stacking faults ~ 0.3 (0.24 to 0.36)
Free surface ~ 1.38

For BCC materials, the values for dislocation cores and free surfaces would be somewhat different, due to
their being only 8 neighbors instead of 12.

Restrictions: none
Related commands:

compute cna/atom

Default: none

(Kelchner) Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

compute centro/atom command 269

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute cluster/atom command
Syntax:
compute ID group-ID cluster/atom cutoff
¢ ID, group-ID are documented in compute command
o cluster/atom = style name of this compute command
¢ cutoff = distance within which to label atoms as part of same cluster (distance units)
Examples:
compute 1 all cluster/atom 1.0
Description:
Define a computation that assigns each atom a cluster ID.
A cluster is defined as a set of atoms, each of which is within the cutoff distance from one or more other
atoms in the cluster. If an atom has no neighbors within the cutoff distance, then it is a 1-atom cluster. The ID

of every atom in the cluster will be the smallest atom ID of any atom in the cluster.

Only atoms in the compute group are clustered and assigned cluster IDs. Atoms not in the compute group are
assigned a cluster ID = 0.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of a clsuter/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be an ID > 0, as explained above.
Restrictions: none
Related commands:

compute coord/atom

Default: none

compute cluster/atom command 270

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute cha/atom command

Syntax:

compute ID group-ID cna/atom cutoff
¢ ID, group-ID are documented in compute command
¢ cna/atom = style name of this compute command
e cutoff = cutoff distance for nearest neighbors (distance units)
Examples:
compute 1 all cna/atom 3.08
Description:
Define a computation that calculates the CNA (Common Neighbor Analysis) pattern for each atom in the
group. In solid-state systems the CNA pattern is a useful measure of the local crystal structure around an

atom. The CNA methodology is described in (Faken) and (Tsuzuki).

Currently, there are five kinds of CNA patterns LAMMPS recognizes:

efcc=1
ehcp=2
ebcc=3

® jcosohedral = 4
e unknown =5

The value of the CNA pattern will be 0 for atoms not in the specified compute group. Note that normally a
CNA calculation should only be performed on mono-component systems.

The CNA calculation can be sensitive to the specified cutoff value. You should insure the appropriate nearest
neighbors of an atom are found within the cutoff distance for the presumed crystal strucure. E.g. 12 nearest
neighbor for perfect FCC and HCP crystals, 14 nearest neighbors for perfect BCC crystals. These formulas
can be used to obtain a good cutoff distance:

2
ri® = g +1)a~0.8536a

o] —

1
re® = S(V2+1)ax1207a

Whep o
e

S| =

where a is the lattice constant for the crystal structure concerned and in the HCP case, x = (c/a) / 1.633, where
1.633 is the ideal c/a for HCP crystals.

compute cna/atom command 271

http://lammps.sandia.gov

LIGGGHTS Users Manual

Also note that since the CNA calculation in LAMMPS uses the neighbors of an owned atom to find the
nearest neighbors of a ghost atom, the following relation should also be satisfied:

Rec 4+ Rs > 2 x cutoff

where Rc is the cutoff distance of the potential, Rs is the skin distance as specified by the neighbor command,
and cutoff is the argument used with the compute cna/atom command. LAMMPS will issue a warning if this
is not the case.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each with a cna/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number from O to 5, as explained above.
Restrictions: none
Related commands:

compute centro/atom

Default: none

(Faken) Faken, Jonsson, Comput Mater Sci, 2, 279 (1994).

(Tsuzuki) Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007).

compute cna/atom command 272

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute com command

Syntax:
compute ID group—-ID com

¢ ID, group-ID are documented in compute command
¢ com = style name of this compute command

Examples:
compute 1 all com
Description:

Define a computation that calculates the center-of-mass of the group of atoms, including all effects due to
atoms passing thru periodic boundaries.

A vector of three quantites is calculated by this compute, which are the x,y,z coordinates of the center of
mass.

IMPORTANT NOTE: The coordinates of an atom contribute to the center-of-mass in "unwrapped" form, by
using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries,
you will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:
This compute calculates a global vector of length 3, which can be accessed by indices 1-3 by any command
that uses global vector values from a compute as input. See this section for an overview of LAMMPS output

options.

The vector values are "intensive". The vector values will be in distance units.

Restrictions: none

Related commands:

compute com/molecule

Default: none

compute com command 273

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute com/molecule command

Syntax:
compute ID group-ID com/molecule

¢ ID, group-ID are documented in compute command
¢ com/molecule = style name of this compute command

Examples:
compute 1 fluid com/molecule
Description:

Define a computation that calculates the center-of-mass of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The x,y,z coordinates of the center-of-mass for a particular molecule are only computed if one or more of its
atoms are in the specified group. Normally all atoms in the molecule should be in the group, however this is
not required. LAMMPS will warn you if this is not the case. Only atoms in the group contribute to the
center-of-mass calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's center-of-mass in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries,
you will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
3 for the x,y,z center-of-mass coordinates of each molecule. These values can be accessed by any command
that uses global array values from a compute as input. See Section _howto 15 for an overview of LAMMPS
output options.

The array values are "intensive". The array values will be in distance units.

Restrictions: none

Related commands:

compute com

compute com/molecule command 274

http://lammps.sandia.gov

LIGGGHTS Users Manual

Default: none

compute com/molecule command 275

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute contact/atom command
Syntax:
compute ID group-ID contact/atom

¢ ID, group-ID are documented in compute command
® contact/atom = style name of this compute command

Examples:

compute 1 all contact/atom

Description:

Define a computation that calculates the number of contacts for each atom in a group.

The contact number is defined for finite-size spherical particles as the number of neighbor atoms which
overlap the central particle, meaning that their distance of separation is less than or equal to the sum of the
radii of the two particles.

The value of the contact number will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, whose values can be accessed by any command that uses per-atom
values from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number >= 0.0, as explained above.

Restrictions:

This compute requires that atoms store a radius as defined by the atom_style sphere command.
Related commands:

compute coord/atom

Default: none

compute contact/atom command 276

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute coord/atom command

Syntax:
compute ID group-ID coord/atom cutoff keyword value

¢ ID, group-ID are documented in compute command

® coord/atom = style name of this compute command

¢ cutoff = distance within which to count coordination neighbors (distance units)
¢ zero or more keyword/value pairs may be appended to args

¢ keyword = mix

mix value = yes or no -ID
no = count all neighbors
yes = count only neighbors that have same atom type
Examples:

compute 1 all coord/atom 2.0

Description:

Define a computation that calculates the coordination number for each atom in a group.

The value of the coordination number will be 0.0 for atoms not in the specified compute group.

The coordination number is defined as the number of neighbor atoms within the specified cutoff distance from
the central atom. Atoms not in the group are included in the coordination number of atoms in the group.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too

frequently or to have multiple compute/dump commands, each of a coord/atom style.

Keyword mix controlls if all neighbors are counted or if only neighbors with same atom type are counted. The
latter can be useful to quanitfy mixture of different species.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number >= 0.0, as explained above.
Restrictions: none
Related commands:

compute cluster/atom

Default: none

compute coord/atom command 277

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute damage/atom command
Syntax:
compute ID group-ID damage/atom

¢ ID, group-ID are documented in compute command
¢ damage/atom = style name of this compute command

Examples:

compute 1 all damage/atom

Description:

Define a computation that calculates the per-atom damage for each atom in a group. Please see the
PDLAMMPS user guide for a formal definition of "damage" and more details about Peridynamics as it is
implemented in LAMMPS.

The value of the damage will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number >= 0.0, as explained above.
Restrictions:

This compute is part of the PERI package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

dump custom

Default: none

compute damage/atom command 278

http://lammps.sandia.gov
http://www.sandia.gov/~mlparks/papers/PDLAMMPS.pdf

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute dihedral/local command

Syntax:
compute ID group-ID dihedral/local inputl input2 ...

¢ ID, group-ID are documented in compute command

¢ dihedral/local = style name of this compute command
¢ zero or more keywords may be appended

¢ keyword = phi

phi = tabulate dihedral angles
Examples:
compute 1 all dihedral/local phi
Description:

Define a computation that calculates properties of individual dihedral interactions. The number of datums
generated, aggregated across all processors, equals the number of angles in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their dihedrals. A dihedral will only be included if all 4 atoms in the dihedral are in the specified compute

group.
Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, dihedral output from the compute property/local command can be combined with
data from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of dihedrals. If a single keyword is specified, a local
vector is produced. If two or more keywords are specified, a local array is produced where the number of
columns = the number of keywords. The vector or array can be accessed by any command that uses local
values from a compute as input. See this section for an overview of LAMMPS output options.

The output for phi will be in degrees.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

compute dihedral/local command 279

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute displace/atom command

Syntax:
compute ID group—-ID displace/atom

¢ ID, group-ID are documented in compute command
e displace/atom = style name of this compute command

Examples:
compute 1 all displace/atom
Description:

Define a computation that calculates the current displacement of each atom in the group from its original
coordinates, including all effects due to atoms passing thru periodic boundaries.

A vector of four quantites per atom is calculated by this compute. The first 3 elements of the vector are the
dx,dy,dz displacements. The 4th component is the total displacement, i.e. sqrt(dx*dx + dy*dy + dz*dz).

The displacement of an atom is from its original position at the time the compute command was issued. To
store the original coordinates, the compute creates its own fix of style "store/state”, as if this command had
been issued:

fix compute-ID_store_state group-ID store/state xu yu zu

See the fix store/state command for details. Note that the ID of the new fix is the compute-ID + underscore +
"store/state", and the group for the new fix is the same as the compute group.

The value of the displacement will be 0.0 for atoms not in the specified compute group.

IMPORTANT NOTE: Fix store/state stores the initial coordinates in "unwrapped" form, by using the image

flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and the computed displacement may not reflect its true displacement. See the fix rigid command
for details. Thus, to compute the displacement of rigid bodies as they cross periodic boundaries, you will need
to post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running
from a restart file, then you should use the same ID for this compute, as in the original run. This is so that the
created fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart
file.

Output info:
This compute calculates a per-atom array with 4 columns, which can be accessed by indices 1-4 by any

command that uses per-atom values from a compute as input. See Section _howto 15 for an overview of
LAMMPS output options.

compute displace/atom command 280

http://lammps.sandia.gov

LIGGGHTS Users Manual

The per-atom array values will be in distance units.

Restrictions: none

Related commands:

compute msd, dump custom, fix store/state

Default: none

compute displace/atom command 281

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/asphere command
Syntax:
compute ID group-ID erotate/asphere

¢ ID, group-ID are documented in compute command
e erotate/asphere = style name of this compute command

Examples:

compute 1 all erotate/asphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of aspherical particles. The
aspherical particles can be ellipsoids, or line segments, or triangles. See the atom_style and read data
commands for descriptions of these options.

For all 3 types of particles, the rotational kinetic energy is computed as 1/2 I w”2, where I is the inertia tensor
for the aspherical particle and w is its angular velocity, which is computed from its angular momentum if

needed.

IMPORTANT NOTE: For 2d models, ellipsoidal particles are treated as ellipsoids, not ellipses, meaning their
moments of inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions:

This compute requires that ellipsoidal particles atoms store a shape and quaternion orientation and angular
momentum as defined by the atom_style ellipsoid command.

This compute requires that line segment particles atoms store a length and orientation and angular velocity as
defined by the atom_style line command.

This compute requires that triangular particles atoms store a size and shape and quaternion orientation and
angular momentum as defined by the atom_style tri command.

All particles in the group must be finite-size. They cannot be point particles.
Related commands: none

compute erotate/sphere

Default: none

compute erotate/asphere command 282

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/sphere command
Syntax:
compute ID group-ID erotate/sphere

¢ ID, group-ID are documented in compute command
e erotate/sphere = style name of this compute command

Examples:

compute 1 all erotate/sphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of spherical particles.

The rotational energy is computed as 1/2 I wA2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions:

This compute requires that atoms store a radius and angular velocity (omega) as defined by the atom_style
sphere command.

All particles in the group must be finite-size spheres or point particles. They cannot be aspherical. Point
particles will not contribute to the rotational energy.

Related commands:

compute erotate/asphere

Default: none

compute erotate/sphere command 283

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute event/displace command
Syntax:
compute ID group-ID event/displace threshold

¢ ID, group-ID are documented in compute command

¢ event/displace = style name of this compute command

¢ threshold = minimum distance anyparticle must move to trigger an event (distance units)
Examples:
compute 1 all event/displace 0.5
Description:
Define a computation that flags an "event" if any particle in the group has moved a distance greater than the
specified threshold distance when compared to a previously stored reference state (i.e. the previous event).
This compute is typically used in conjunction with the prd and tad commands, to detect if a transition to a new

minimum energy basin has occurred.

This value calculated by the compute is equal to 0 if no particle has moved far enough, and equal to 1 if one or
more particles have moved further than the threshold distance.

NOTE: If the system is undergoing significant center-of-mass motion, due to thermal motion, an external
force, or an initial net momentum, then this compute will not be able to distinguish that motion from local
atom displacements and may generate "false postives."

Output info:

This compute calculates a global scalar (the flag). This value can be used by any command that uses a global
scalar value from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The scalar value will be a 0 or 1 as explained
above.

Restrictions:

This command can only be used if LAMMPS was built with the REPLICA package. See the Making
LAMMPS section for more info on packages.

Related commands:
prd, tad

Default: none

compute event/displace command 284

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute group/group command

Syntax:
compute ID group—-ID group/group group2-ID

¢ ID, group-ID are documented in compute command
¢ group/group = style name of this compute command
¢ group2-ID = group ID of second (or same) group

Examples:

compute 1 lower group/group upper
compute mine fluid group/group wall

Description:

Define a computation that calculates the total energy and force interaction between two groups of atoms: the
compute group and the specified group2. The two groups can be the same. The interaction energy is defined
as the pairwise energy between all pairs of atoms where one atom in the pair is in the first group and the other
is in the second group. Likewise, the interaction force calculated by this compute is the force on the compute
group atoms due to pairwise interactions with atoms in the specified group?2.

The energy and force are calculated by looping over a neighbor list of pairwise interactions. Thus it can be
inefficient to compute this quantity too frequently.

Output info:
This compute calculates a global scalar (the energy) and a global vector of length 3 (force), which can be
accessed by indices 1-3. These values can be used by any command that uses global scalar or vector values

from a compute as input. See this section for an overview of LAMMPS output options.

Both the scalar and vector values calculated by this compute are "extensive". The scalar value will be in
energy units. The vector values will be in force units.

Restrictions:

Only pairwise interactions, as defined by the pair_style command, are included in this calculation. Bond
(angle, dihedral, etc) interactions between atoms in the two groups are not included. Long-range interactions
due to a kspace style command are also not included. Not all pair potentials can be evaluated in a pairwise
mode as required by this compute. For example, 3-body potentials, such as Tersoff and Stillinger-Weber
cannot be used. EAM potentials for metals only include the pair potential portion of the EAM interaction, not
the embedding term.

Related commands: none

Default: none

compute group/group command 285

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute gyration command
Syntax:
compute ID group-ID gyration

¢ ID, group-ID are documented in compute command
¢ gyration = style name of this compute command

Examples:

compute 1 molecule gyration
Description:

Define a computation that calculates the radius of gyration Rg of the group of atoms, including all effects due
to atoms passing thru periodic boundaries.

Rg is a measure of the size of the group of atoms, and is computed by this formula

. 1

.?'f'l-i(?"i — ?"r:rirn)2

where M is the total mass of the group, Rcm is the center-of-mass position of the group, and the sum is over
all atoms in the group.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image

flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

Output info:

This compute calculates a global scalar (Rg). This value can be used by any command that uses a global scalar
value from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The scalar value will be in distance units.
Restrictions: none
Related commands:

compute gyration/molecule

Default: none

compute gyration command 286

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute gyration/molecule command
Syntax:
compute ID group—-ID gyration/molecule

¢ ID, group-ID are documented in compute command
¢ gyration/molecule = style name of this compute command

Examples:
compute 1 molecule gyration/molecule
Description:

Define a computation that calculates the radius of gyration Rg of individual molecules. The calculation
includes all effects due to atoms passing thru periodic boundaries.

Rg is a measure of the size of a molecule, and is computed by this formula

. 1

.?'f'l-i(?"i — ?"r:rirn)2

where M is the total mass of the molecule, Rcm is the center-of-mass position of the molecule, and the sum is
over all atoms in the molecule and in the group.

Rg for a particular molecule is only computed if one or more of its atoms are in the specified group. Normally
all atoms in the molecule should be in the group, however this is not required. LAMMPS will warn you if this
is not the case. Only atoms in the group contribute to the Rg calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image
flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.
Output info:

This compute calculates a global vector of Rg values where the length of the vector = Nmolecules. These
values can be used by any command that uses global vector values from a compute as input. See this section
for an overview of LAMMPS output options.

The vector values calculated by this compute are "intensive". The vector values will be in distance units.
Restrictions: none

Related commands: none

compute gyration/molecule command 287

http://lammps.sandia.gov

LIGGGHTS Users Manual
compute gyration

Default: none

compute gyration/molecule command 288

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute heat/flux command

Syntax:

compute ID group-ID heat/flux ke-ID pe-ID stress-ID

¢ ID, group-ID are documented in compute command

¢ heat/flux = style name of this compute command

¢ ke-ID = ID of a compute that calculates per-atom kinetic energy

¢ pe-ID = ID of a compute that calculates per-atom potential energy
e stress-1D = ID of a compute that calculates per-atom stress

Examples:

compute myFlux all heat/flux myKE myPE myStress

Description:

Define a computation that calculates the heat flux vector based on contributions from atoms in the specified
group. This can be used by itself to measure the heat flux into or out of a reservoir of atoms, or to calculate a

thermal conductivity using the Green-Kubo formalism.

See the fix thermal/conductivity command for details on how to compute thermal conductivity in an alternate
way, via the Muller-Plathe method. See the fix heat command for a way to control the heat added or
subtracted to a group of atoms.

The compute takes three arguments which are IDs of other computes. One calculates per-atom kinetic energy
(ke-1D), one calculates per-atom potential energy (pe-ID), and the third calcualtes per-atom stress (stress-ID).
These should be defined for the same group used by compute heat/flux, though LAMMPS does not check for
this.

The Green-Kubo formulas relate the ensemble average of the auto-correlation of the heat flux J to the thermal
conductivity kappa:

T
d = v Zi:ffivi_zi:.sivi

1 o
— ? Zeivi ‘|‘Z(f13 'V.;i") Xij

1<

I 1
= | evit g (B (vit+v))xy

compute heat/flux command 289

http://lammps.sandia.gov

LIGGGHTS Users Manual

Voo Vo oo
= 0T lt:—,_/ 3(0) - J(t)) dt
K=, O T dt =z [0 3(0)

Ei in the first term of the equation for J is the per-atom energy (potential and kinetic). This is calculated by the
computes ke-ID and pe-ID. Si in the second term of the equation for J is the per-atom stress tensor calculated
by the compute stress-ID. The tensor multiplies Vi as a 3x3 matrix-vector multiply to yield a vector. Note that
as discussed below, the 1/V scaling factor in the equation for J is NOT included in the calculation performed
by this compute; you need to add it for a volume appropriate to the atoms included in the calculation.

IMPORTANT NOTE: The compute pe/atom and compute stress/atom commands have options for which
terms to include in their calculation (pair, bond, etc). The heat flux calculation will thus include exactly the
same terms. Normally you should use compute stress/atom virial so as not to include a kinetic energy term in
the heat flux.

This compute calculates 6 quantities and stores them in a 6-component vector. The first 3 components are the
X, y, z components of the full heat flux vector, i.e. (Jx, Jy, Jz). The next 3 components are the X, y, z
components of just the convective portion of the flux, i.e. the first term in the equation for J above.

The heat flux can be output every so many timesteps (e.g. via the thermo_style custom command). Then as a
post-processing operation, an autocorrelation can be performed, its integral estimated, and the Green-Kubo
formula above evaluated.

The fix ave/correlate command can calclate the autocorrelation. The trap() function in the yvariable command
can calculate the integral.

An example LAMMPS input script for solid Ar is appended below. The result should be: average conductivity
~0.29 in W/mK.

Output info:

This compute calculates a global vector of length 6 (total heat flux vector, followed by conductive heat flux
vector), which can be accessed by indices 1-6. These values can be used by any command that uses global
vector values from a compute as input. See this section for an overview of LAMMPS output options.

The vector values calculated by this compute are "extensive", meaning they scale with the number of atoms in
the simulation. They can be divided by the appropriate volume to get a flux, which would then be an
"intensive" value, meaning independent of the number of atoms in the simulation. Note that if the compute is
"all", then the appropriate volume to divide by is the simulation box volume. However, if a sub-group is used,
it should be the volume containing those atoms.

The vector values will be in energy*velocity units. Once divided by a volume the units will be that of flux,
namely energy/area/time units

Restrictions: none
Related commands:

fix_thermal/conductivity, fix ave/correlate, variable

Default: none

compute heat/flux command 290

LIGGGHTS Users Manual

Sample LAMMPS input script for thermal conductivity of solid Ar

units real

variable T equal 70

variable V equal vol

variable dt equal 4.0

variable p equal 200 # correlation length
variable s equal 10 # sample interval
variable d equal $p*$s # dump interval

convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K] Boltzmann
variable kCal2J equal 4186.0/6.02214e23

variable A2m equal 1.0e-10

variable fs2s equal 1.0e-15

variable convert equal ${kCal2J}*${kCal2Jd}/${fs2s}/S${A2m}

setup problem

dimension 3

boundary P PP

lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
region box block 0 4 0 4 0 4

create_box 1 box

create_atoms 1 box

mass 1 39.948

pair_style 1j/cut 13.0
pair_coeff * * (0.2381 3.405
timestep S{dt}

thermo $d

equilibration and thermalization

velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
run 8000

thermal conductivity calculation, switch to NVE if desired

#unfix NVT
#fix NVE all nve

reset_timestep 0

compute myKE all ke/atom
compute myPE all pe/atom
compute myStress all stress/atom virial
compute flux all heat/flux myKE myPE myStress
variable Jx equal c_flux[1l]/vol
variable Jy equal c_flux[2]/vol
variable Jz equal c_flux[3]/vol
fix JJ all ave/correlate $s S$Sp $d &
c_flux[1l] c_flux[2] c_flux[3] type auto file J0Jt.dat ave running
variable scale equal S${convert}/${kB}/ST/ST/SV*S$s*S${dt}
variable k11l equal trap(f_JJ[3])*S${scale}
variable k22 equal trap(f_JJ[4])*S$S{scale}
variable k33 equal trap(f_JJ[5])*S${scale}
thermo_style custom step temp v_Jx v_Jy v_Jz v_kll v_k22 v_k33
run 100000
variable k equal (v_kll+v_k22+v_k33)/3.0
variable ndens equal count (all)/vol
print "average conductivity: S$k[W/mK] @ ST K, ${ndens} /A"3"

compute heat/flux command 291

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute improper/local command

Syntax:
compute ID group-ID improper/local inputl input2 ...

¢ ID, group-ID are documented in compute command

¢ improper/local = style name of this compute command
¢ zero or more keywords may be appended

¢ keyword = chi

chi = tabulate improper angles
Examples:
compute 1 all improper/local chi
Description:

Define a computation that calculates properties of individual improper interactions. The number of datums
generated, aggregated across all processors, equals the number of impropers in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their impropers. An improper will only be included if all 4 atoms in the improper are in the specified compute

group.
Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, improper output from the compute property/local command can be combined with
data from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of impropers. If a single keyword is specified, a local
vector is produced. If two or more keywords are specified, a local array is produced where the number of
columns = the number of keywords. The vector or array can be accessed by any command that uses local
values from a compute as input. See this section for an overview of LAMMPS output options.

The output for chi will be in degrees.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

compute improper/local command 292

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke command
Syntax:
compute ID group-ID ke

¢ ID, group-ID are documented in compute command
¢ ke = style name of this compute command

Examples:

compute 1 all ke

Description:

Define a computation that calculates the translational kinetic energy of a group of particles.

The kinetic energy or each particle is computed as 1/2 m v*2, where m and v are the mass and velocity of the
particle.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke or efotal keyword used in thermodynamic output, as specified by the thermo style command. For
this compute, kinetic energy is "translational" kinetic energy, calculated by the simple formula above. For
thermodynamic output, the ke keyword infers kinetic energy from the temperature of the system with 1/2 Kb
T of energy for each degree of freedom. For the default temperature computation via the compute temp
command, these are the same. But different computes that calculate temperature can subtract out different
non-thermal components of velocity and/or include different degrees of freedom (translational, rotational,
etc).

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none
Related commands:

compute erotate/sphere

Default: none

compute ke command 293

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/atom command
Syntax:
compute ID group-ID ke/atom

¢ ID, group-ID are documented in compute command
¢ ke/atom = style name of this compute command

Examples:
compute 1 all ke/atom

Description:

Define a computation that calculates the per-atom translational kinetic energy for each atom in a group.

The kinetic energy is simply 1/2 m v*2, where m is the mass and v is the velocity of each atom.
The value of the kinetic energy will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values

from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.
The per-atom vector values will be in energy units.

Restrictions: none

Related commands:

dump custom

Default: none

compute ke/atom command

294

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/atom/eff command

Syntax:
compute ID group—-ID ke/atom/eff

¢ ID, group-ID are documented in compute command
¢ ke/atom/eff = style name of this compute command

Examples:
compute 1 all ke/atom/eff
Description:

Define a computation that calculates the per-atom translational (nuclei and electrons) and radial kinetic energy
(electron only) in a group. The particles are assumed to be nuclei and electrons modeled with the electronic
force field.

The kinetic energy for each nucleus is computed as 1/2 m v*2, where m corresponds to the corresponding
nuclear mass, and the kinetic energy for each electron is computed as 1/2 (me v*2 + 3/4 me s"2), where me
and v correspond to the mass and translational velocity of each electron, and s to its radial velocity,
respectively.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke or efotal keyword used in thermodynamic output, as specified by the thermo style command. For
this compute, kinetic energy is "translational" plus electronic "radial" kinetic energy, calculated by the simple
formula above. For thermodynamic output, the ke keyword infers kinetic energy from the temperature of the
system with 1/2 Kb T of energy for each (nuclear-only) degree of freedom in eFF.

IMPORTANT NOTE: The temperature in eFF should be monitored via the compute temp/eff command,
which can be printed with thermodynamic output by using the thermo modify command, as shown in the

following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

The value of the kinetic energy will be 0.0 for atoms (nuclei or electrons) not in the specified compute group.
Output info:

This compute calculates a scalar quantity for each atom, which can be accessed by any command that uses
per-atom computes as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

Related commands:

compute ke/atom/eff command 295

http://lammps.sandia.gov

LIGGGHTS Users Manual
dump custom

Default: none

compute ke/atom/eff command 296

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/eff command

Syntax:
compute ID group-ID ke/eff

¢ ID, group-ID are documented in compute command
o ke/eff = style name of this compute command

Examples:
compute 1 all ke/eff
Description:

Define a computation that calculates the kinetic energy of motion of a group of eFF particles (nuclei and
electrons), as modeled with the electronic force field.

The kinetic energy for each nucleus is computed as 1/2 m v*2 and the kinetic energy for each electron is
computed as 1/2(me v*2 + 3/4 me s"*2), where m corresponds to the nuclear mass, me to the electron mass, v
to the translational velocity of each particle, and s to the radial velocity of the electron, respectively.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke or efotal keyword used in thermodynamic output, as specified by the thermo style command. For
this compute, kinetic energy is "translational" and "radial” (only for electrons) kinetic energy, calculated by
the simple formula above. For thermodynamic output, the ke keyword infers kinetic energy from the
temperature of the system with 1/2 Kb T of energy for each degree of freedom. For the eFF temperature
computation via the compute temp eff command, these are the same. But different computes that calculate
temperature can subtract out different non-thermal components of velocity and/or include other degrees of
freedom.

IMPRORTANT NOTE: The temperature in eFF models should be monitored via the compute temp/eff
command, which can be printed with thermodynamic output by using the thermo modify command, as shown

in the following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

See compute temp/eff.
Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

compute ke/eff command 297

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands: none

Default: none

compute ke/eff command 298

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_e/atom command
Syntax:
compute ID group—-ID meso_e/atom

¢ ID, group-ID are documented in compute command
® meso_e/atom = style name of this compute command

Examples:

compute 1 all meso_e/atom

Description:

Define a computation that calculates the per-atom internal energy for each atom in a group.

The internal energy is the energy associated with the internal degrees of freedom of a mesoscopic particles,
e.g. a Smooth-Particle Hydrodynamics particle.

See this PDF guide to using SPH in LAMMPS.
The value of the internal energy will be 0.0 for atoms not in the specified compute group.
Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

Related commands:

dump custom

Default: none

compute meso_e/atom command 299

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_rho/atom command
Syntax:
compute ID group—-ID meso_rho/atom

¢ ID, group-ID are documented in compute command
¢ meso_rho/atom = style name of this compute command

Examples:

compute 1 all meso_rho/atom

Description:

Define a computation that calculates the per-atom mesoscopic density for each atom in a group.

The mesoscopic density is the mass density of a mesoscopic particle, calculated by kernel function
interpolation using "pair style sph/rhosum”.

See this PDF guide to using SPH in LAMMPS.
The value of the mesoscopic density will be 0.0 for atoms not in the specified compute group.
Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in mass/volume units.
Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

Related commands:

dump custom

Default: none

compute meso_rho/atom command 300

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_t/atom command
Syntax:
compute ID group—-ID meso_t/atom

¢ ID, group-ID are documented in compute command
® meso_t/atom = style name of this compute command

Examples:

compute 1 all meso_t/atom

Description:

Define a computation that calculates the per-atom internal temperature for each atom in a group.

The internal temperature is the ratio of internal energy over the heat capacity associated with the internal
degrees of freedom of a mesoscopic particles, e.g. a Smooth-Particle Hydrodynamics particle.

T int=E_int/C_V, int

See this PDF guide to using SPH in LAMMPS.

The value of the internal energy will be 0.0 for atoms not in the specified compute group.
Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in temperature units.
Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making L AMMPS section for more info.

Related commands:

dump custom

Default: none

compute meso_t/atom command 301

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute_modify command

Syntax:
compute_modify compute-ID keyword value

e compute-ID = ID of the compute to modify
¢ one or more keyword/value pairs may be listed
¢ keyword = extra or dynamic

extra value = N
N = # of extra degrees of freedom to subtract
dynamic value = yes or no

yes/no = do or do not recompute the number of atoms contributing to the temperature
thermo value = yes or no
yes/no = do or do not add contributions from fixes to the potential energy

Examples:

compute_modify myTemp extra O
compute_modify newtemp dynamic yes extra 600

Description:

Modify one or more parameters of a previously defined compute. Not all compute styles support all
parameters.

The extra keyword refers to how many degrees-of-freedom are subtracted (typically from 3N) as a
normalizing factor in a temperature computation. Only computes that compute a temperature use this option.
The default is 2 or 3 for 2d or 3d systems which is a correction factor for an ensemble of velocities with zero
total linear momentum. You can use a negative number for the extra parameter if you need to add
degrees-of-freedom. See the compute temp/asphere command for an example.

The dynamic keyword determines whether the number of atoms N in the compute group is re-computed each
time a temperature is computed. Only compute styles that compute a temperature use this option. By default,
N is assumed to be constant. If you are adding atoms to the system (see the fix_pour or fix deposit commands)
or expect atoms to be lost (e.g. due to evaporation), then this option can be used to insure the temperature is
correctly normalized.

The thermo keyword determines whether the potential energy contribution calculated by some fixes is added
to the potential energy calculated by the compute. Currently, only the compute of style pe uses this option.
See the doc pages for individual fixes for details.

Restrictions: none

Related commands:

compute

Default:

The option defaults are extra =2 or 3 for 2d or 3d systems and dynamic = no. Thermo is yes if the compute of

style pe was defined with no extra keywords; otherwise it is no.

compute_modify command 302

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute msd command

Syntax:
compute ID group-ID msd keyword values ...

¢ ID, group-ID are documented in compute command
¢ msd = style name of this compute command

¢ zero or more keyword/value pairs may be appended
¢ keyword = com

com value = yes or no
Examples:

compute 1 all msd
compute 1 upper msd com yes

Description:

Define a computation that calculates the mean-squared displacement (MSD) of the group of atoms, including
all effects due to atoms passing thru periodic boundaries.

A vector of four quantites is calculated by this compute. The first 3 elements of the vector are the squared
dx,dy,dz displacements, summed and averaged over atoms in the group. The 4th component is the total
squared displacement, i.e. (dx*dx + dy*dy + dz*dz), summed and averaged over atoms in the group.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of
the diffusing atoms.

The displacement of an atom is from its original position at the time the compute command was issued. To
store the original coordinates, the compute creates its own fix of style "store/state”, as if this command had
been issued:

fix compute-ID_store_state group-ID store/state xu yu zu

See the fix store/state command for details. Note that the ID of the new fix is the compute-ID + underscore +
"store_state", and the group for the new fix is the same as the compute group.

If the com option is set to yes then the effect of any drift in the center-of-mass of the group of atoms is
subtracted out before the displacment of each atom is calcluated. The com option is also passed to the created
fix store/state.

IMPORTANT NOTE: Fix store/state stores the initial coordinates in "unwrapped" form, by using the image

flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

compute msd command 303

http://lammps.sandia.gov

LIGGGHTS Users Manual

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running
from a restart file, then you should use the same ID for this compute, as in the original run. This is so that the
created fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart
file.

Output info:

This compute calculates a global vector of length 4, which can be accessed by indices 1-4 by any command
that uses global vector values from a compute as input. See this section for an overview of LAMMPS output
options.

The vector values are "intensive". The vector values will be in distance”2 units.

Restrictions: none

Related commands:

compute displace atom, fix store/state, compute msd/molecule

Default:

The option default is com = no.

compute msd command 304

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute msd/molecule command

Syntax:
compute ID group-ID msd/molecule

¢ ID, group-ID are documented in compute command
¢ msd/molecule = style name of this compute command

Examples:
compute 1 all msd/molecule
Description:

Define a computation that calculates the mean-squared displacement (MSD) of individual molecules. The
calculation includes all effects due to atoms passing thru periodic boundaries.

Four quantites are calculated by this compute for each molecule. The first 3 quantities are the squared
dx,dy,dz displacements of the center-of-mass. The 4th component is the total squared displacement, i.e.
(dx*dx + dy*dy + dz*dz) of the center-of-mass.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of
the diffusing molecules.

The displacement of the center-of-mass of the molecule is from its original center-of-mass position at the time
the compute command was issued.

The MSD for a particular molecule is only computed if one or more of its atoms are in the specified group.
Normally all atoms in the molecule should be in the group, however this is not required. LAMMPS will warn
you if this is not the case. Only atoms in the group contribute to the center-of-mass calculation for the
molecule, which is used to caculate its initial and current position.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The initial coordinates of each molecule are stored in "unwrapped" form, by using the
image flags associated with each atom. See the dump custom command for a discussion of "unwrapped"
coordinates. See the Atoms section of the read data command for a discussion of image flags and how they
are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set
image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: Unlike the compute msd command, this compute does not store the initial

center-of-mass coorindates of its molecules in a restart file. Thus you cannot continue the MSD per molecule
calculation of this compute when running from a restart file.

compute msd/molecule command 305

http://lammps.sandia.gov

LIGGGHTS Users Manual
Output info:
This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
4 for dx,dy,dz and the total displacement. These values can be accessed by any command that uses global
array values from a compute as input. See this section for an overview of LAMMPS output options.
The array values are "intensive". The array values will be in distance”2 units.
Restrictions: none
Related commands:

compute msd

Default: none

compute msd/molecule command 306

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute nparticles/tracer/region command

Syntax:
compute ID group-ID nparticles/tracer/region

¢ ID, group-ID are documented in compute command

¢ nparticles/tracer/region = style name of this compute command
¢ region_count = obligatory keyword

¢ region-ID = ID of region atoms must be in to be counted

e tracer = obligatory keyword

e tracer-ID = ID of a fix of type fix property/atom/tracer

e zero or more keyword/value pairs may be appended to args

¢ keyword = periodic or check_mark_every

periodic value = dim image
dim = x or y or z
image = image that a particle has to be in to be counted (any integer number or all)
reset_marker value = yes or no
yes = un-mark particles after counting them
no = do not un-mark particles after counting them
Examples:

compute nparticles all nparticles/tracer/region region_count count tracer tr periodic z -1
Description:
Define a computation that calculates the number and mass of marked and un-marked particles that are in

the region speficied via the region_count keyword. Particles have to be in the group "group-ID" to be
counted.

Note that only particles marked by a fix property/atom/tracer or fix property/atom/tracer/stream command
are counted - therefore, a valid ID of such a fix has to be provided via the tracer keyword.

The reset_marker keyword controls if particles are un-marked (default) after they have been counted once
by this command.

IMPORTANT NOTE: If multiple compute nparticles/tracer/region commands are operating on the same fix
property/atom/tracer commands, and the first compute resets the marker value, the second compute will not

count them.

With the periodic keyword, you can restrict counting/unmarking to particles which are in a specified image
in a periodic simulation. For example, using

periodic z +2

means that particles are only counted if they are in z-image #2. By default, all particles are
counted/unmarked regardless in which periodic image they are.

IMPORTANT NOTE: Currently, this command only supports one periodic boundary restriction via the
periodic keyword. If keyword periodic is used multiple times, the last setting will be applied.

Output info:

compute nparticles/tracer/region command 307

http://lammps.sandia.gov

LIGGGHTS Users Manual

This this compute calculates a global vector containing the following information (the number in brackets
corresponds to the vector id):
¢ (1) total number of (marked + un-marked) particles in region
® (2) number of marked particles in region
® (3) total mass of (marked + un-marked) particles in region
® (4) mass of marked particles in region
See this section for an overview of LAMMPS output options.
Restrictions:
Currently, only one periodic restriction via the periodic keyword can be used.
Related commands:

fix_property/atom/tracer

Default: reset_marker = yes, periodic is off per default

compute nparticles/tracer/region command 308

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pair command

Syntax:
compute ID group-ID pair pstyle evalue

¢ ID, group-ID are documented in compute command

¢ pair = style name of this compute command

¢ pstyle = style name of a pair style that calculates additional values
e evalue = epair or evdwl or ecoul or blank (optional setting)

Examples:

compute 1 all pair gauss
compute 1 all pair 1lj/cut/coul/cut ecoul
compute 1 all pair reax

Description:

Define a computation that extracts additional values calculated by a pair style, sums them across processors,
and makes them accessible for output or further processing by other commands. The group specified for this
command is ignored.

The specified pstyle must be a pair style used in your simulation either by itself or as a sub-style in a
pair_style hybrid or hybrid/overlay command.

The evalue setting is optional; it may be left off the command. All pair styles tally a potential energy epair
which may be broken into two parts: evdwl and ecoul such that epair = evdwl + ecoul. If the pair style
calculates Coulombic interactions, their energy will be tallied in ecoul. Everything else (whether it is a
Lennard-Jones style van der Waals interaction or not) is tallied in evdwl. If evalue is specified as epair or left
out, then epair is stored as a global scalar by this compute. This is useful when using pair_style hybrid if you
want to know the portion of the total energy contributed by one sub-style. If evalue is specfied as evdwl or
ecoul, then just that portion of the energy is stored as a global scalar.

Some pair styles tally additional quantities, e.g. a breakdown of potential energy into a dozen or so
components is tallied by the pair_style reax commmand. These values (1 or more) are stored as a global
vector by this compute. See the doc page for individual pair styles for info on these values.

Output info:

This compute calculates a global scalar which is epair or evdwl or ecoul. If the pair style supports it, it also
calculates a global vector of length >= 1, as determined by the pair style. These values can be used by any
command that uses global scalar or vector values from a compute as input. See this section for an overview of
LAMMPS output options.

The scalar and vector values calculated by this compute are "extensive".

The scalar value will be in energy units. The vector values will typically also be in energy units, but see the
doc page for the pair style for details.

Restrictions: none

Related commands:

compute pair command 309

http://lammps.sandia.gov

LIGGGHTS Users Manual
com[zute pe

Default:

The default for evalue is epair.

compute pair command 310

LIGGGHTS Users Manual
LIGGGHTS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

compute pair/gran/local command

compute wall/gran/local command

Syntax:

compute ID group-ID pair/gran/local keywords
compute ID group-ID wall/gran/local keywords

¢ ID, group-ID are documented in compute command

e pair/gran/local or wall/gran/local = style name of this compute command
¢ zero or more keywords may be appended

¢ keyword = pos or id or force or torque or history or contactArea

pos = positions of particles in contact (6 values)

id = IDs of particles in contact and a periodicity flag (3 values) or IDs of the mesh, t

force = contact force (3 values)

torque = torque divided by particle diameter (3 wvalues)

history = contact history (# depends on pair style, e.g. 3 shear history values)
contactArea = area of the contact (1 value)

heatFlux = conductive heat flux of the contact (1 wvalue)

Examples:

compute 1 all pair/gran/local
compute 1 all pair/gran/local pos force
compute 1 all wall/gran/local

Description:

Define a computation that calculates properties of individual pairwise or particle-wall interactions of a
granular pair style. The number of datums generated, aggregated across all processors, equals the number of
pairwise interactions or particle-wall interactions in the system.

The local data stored by this command is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute
group, and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined
by the pair_style and pair_coeff commands.

IMPORTANT NOTE: For accessing particle-wall contact data, only mesh walls (see fix mesh) can be used.
For computing particle-wall (compute wall/gran/local), the code will automatically look for a fix wall/gran
command that uses mesh walls. The order of the meshes in the fix wall/gran command is called the mesh id
(starting with 0), and the triangle id reflects the order of the triangles in the STL/VTK file read via the
dedicated fix mesh command. For how to output the trangle id, see "dump mesh/gran/VTK
command"dump.html.

The output pos is the particle positions (6 values) in distance units. For computing pairwise data, the output id
will be the two particle IDs (using this option requires to use an atom map) and a flag that is 1 for interaction
over a periodic boundary and O otherwise. For computing particle-wall data, the output id will be the mesh id,
the triangle id and the particle id. The output force and torque are the contact force and the torque divided by
the particle radius, both in force units. Note that the torque does NOT contain any rolling friction torque. The
output history will depend on what this history represents, according to the granular pair style used. The
output contactArea will output the contact area, in distance”2 units. The output heatFlux (available only if a
fix heat/gran is used to compute heat fluxes) will output the per-contact conductive heat flux area, in

compute pair/gran/local command 311

http://www.cfdem.com

LIGGGHTS Users Manual

energy/time units.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, pair output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of pairs. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

For information on the units of the output, see above.

Restrictions:

Can only be used together with a granular pair style. For accessing particle-wall contact data, only mesh walls
can be used.

Related commands:
dump local, compute property/local, compute pair/local
Default:

By default, all of the outputs keywords (except the heat flux) are activated, i.e. when no keyword is used,
positions, ids, forces, torques, history and contact area are output.

compute wall/gran/local command 312

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pair/local command

Syntax:
compute ID group-ID pair/local inputl input2

¢ ID, group-ID are documented in compute command
¢ pair/local = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = dist or eng or force or fx or fy or fz or pN

dist = pairwise distance
eng = palrwise energy
force = pairwise force
fx, fy, fz = components of pairwise force
pN = pair style specific quantities for allowed N values

Examples:

compute 1 all pair/local eng

compute 1 all pair/local dist eng force

compute 1 all pair/local dist eng fx fy fz
compute 1 all pair/local dist fx fy fz pl p2 p3
Description:

Define a computation that calculates properties of individual pairwise interactions. The number of datums
generated, aggregated across all processors, equals the number of pairwise interactions in the system.

The local data stored by this command is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute
group, and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined
by the pair_style and pair_coeff commands.

The output dist is the distance bewteen the pair of atoms.
The output eng is the interaction energy for the pair of atoms.

The output force is the force acting between the pair of atoms, which is positive for a repulsive force and
negative for an attractive force. The outputs fx, fy, and fz are the xyz components of force on atom 1.

A pair style may define additional pairwise quantities which can be accessed as p/ to pN, where N is defined
by the pair style. Most pair styles do not define any additional quantities, so N = 0. An example of ones that
do are the granular pair styles which calculate the tangential force between two particles and return its
components and magnitude acting on atom I for N = 1,2,3,4. See individual pair styles for detils.

The output dist will be in distance units. The output eng will be in energy units. The outputs force, fx, fy, and
Jfz will be in force units. The output pN will be in whatever units the pair style defines.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, pair output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

compute pair/local command 313

http://lammps.sandia.gov

LIGGGHTS Users Manual

IMPORTANT NOTE: For pairs, if two atoms L,J are involved in 1-2, 1-3, 1-4 interactions within the
molecular topology, their pairwise interaction may be turned off, and thus they may not appear in the neighbor
list, and will not be part of the local data created by this command. More specifically, this may be true of IJ
pairs with a weighting factor of 0.0; pairs with a non-zero weighting factor are included. The weighting
factors for 1-2, 1-3, and 1-4 pairwise interactions are set by the special bonds command.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of pairs. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

The output for dist will be in distance units. The output for eng will be in energy units. The output for force
will be in force units.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

compute pair/local command 314

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pe command

compute pe/cuda command

Syntax:
compute ID group-ID pe keyword ...

¢ ID, group-ID are documented in compute command

¢ pe = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = pair or bond or angle or dihedral or improper or kspace

Examples:

compute 1 all pe
compute molPE all pe bond angle dihedral improper

Description:

Define a computation that calculates the potential energy of the entire system of atoms. The specified group
must be "all". See the compute pe/atom command if you want per-atom energies. These per-atom values could
be summed for a group of atoms via the compute reduce command.

The energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no extra
keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral, improper, and kspace
(long-range) energy. If any extra keywords are listed, then only those components are summed to compute the
potential energy.

The KSpace contribution requires 1 extra FFT each timestep the per-atom energy is calculated, if using the
PPPM solver via the kspace style pppm command. Thus it can increase the cost of the PPPM calculation if it
is needed on a large fraction of the simulation timesteps.

Various fixes can contribute to the total potential energy of the system. See the doc pages for individual fixes
for details. The thermo option of the compute modify command determines whether these contributions are
added into the computed potential energy. If no keywords are specified the default is yes. If any keywords are
specified, the default is no.

A compute of this style with the ID of "thermo_pe" is created when LAMMPS starts up, as if this command
were in the input script:

compute thermo_pe all pe

See the "thermo_style" command for more details.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

compute pe command 315

http://lammps.sandia.gov

LIGGGHTS Users Manual

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the potential energy). This value can be used by any command that
uses a global scalar value from a compute as input. See Section _howto 15 for an overview of LAMMPS
output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none

Related commands:

compute pe/atom

Default: none

compute pe/cuda command 316

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pe/atom command

Syntax:
compute ID group-ID pe/atom keyword ...

¢ ID, group-ID are documented in compute command

® pe/atom = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = pair or bond or angle or dihedral or improper or kspace

Examples:

compute 1 all pe/atom
compute 1 all pe/atom pair
compute 1 all pe/atom pair bond

Description:

Define a computation that computes the per-atom potential energy for each atom in a group. See the compute
pe command if you want the potential energy of the entire system.

The per-atom energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no
extra keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral,improper, and
kspace energy. If any extra keywords are listed, then only those components are summed to compute the
potential energy.

Note that the energy of each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

For an energy contribution produced by a small set of atoms (e.g. 4 atoms in a dihedral or 3 atoms in a Tersoff
3-body interaction), that energy is assigned in equal portions to each atom in the set. E.g. 1/4 of the dihedral
energy to each of the 4 atoms.

The dihedral style charmm style calculates pairwise interactions between 1-4 atoms. The energy contribution
of these terms is included in the pair energy, not the dihedral energy.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and a related
method for PPPM, as specified by the kspace style pppm command. For PPPM, the calcluation requires 1
extra FFT each timestep that per-atom stress is calculated.

As an example of per-atom potential energy compared to total potential energy, these lines in an input script
should yield the same result in the last 2 columns of thermo output:

compute peratom all pe/atom
compute pe all reduce sum c_peratom
thermo_style custom step temp etotal press pe c_pe

IMPORTANT NOTE: The per-atom energy does not any Lennard-Jones tail corrections invoked by the
pair_modify tail yes command, since those are global contributions to the system energy.

Output info:

compute pe/atom command 317

http://lammps.sandia.gov

LIGGGHTS Users Manual

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions:
Related commands:

compute pe, compute stress/atom

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

compute pe/atom command 318

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pressure command

compute pressure/cuda command

Syntax:
compute ID group-ID pressure temp-ID keyword ...

¢ ID, group-ID are documented in compute command

¢ pressure = style name of this compute command

e temp-ID = ID of compute that calculates temperature

¢ zero or more keywords may be appended

¢ keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial

Examples:

compute 1 all pressure myTemp
compute 1 all pressure thermo_temp pair bond

Description:
Define a computation that calculates the pressure of the entire system of atoms. The specified group must be
"all". See the compute stress/atom command if you want per-atom pressure (stress). These per-atom values

could be summed for a group of atoms via the compute reduce command.

The pressure is computed by the formula

1'\"'/17 T _J-‘V r; ® J;
_ Nkg +Zz e f;

P
vV dV

where N is the number of atoms in the system (see discussion of DOF below), Kb is the Boltzmann constant,
T is the temperature, d is the dimensionality of the system (2 or 3 for 2d/3d), V is the system volume (or area
in 2d), and the second term is the virial, computed within LAMMPS for all pairwise as well as 2-body,
3-body, and 4-body, and long-range interactions. Fixes that impose constraints (e.g. the fix shake command)
also contribute to the virial term.

A symmetric pressure tensor, stored as a 6-element vector, is also calculated by this compute. The 6
components of the vector are ordered xx, yy, 7z, Xy, Xz, yz. The equation for the I,J components (where I and
J =x,y,z) is similar to the above formula, except that the first term uses components of the kinetic energy
tensor and the second term uses components of the virial tensor:

SNV o 1 N
2"" MUk Yk -+ Zk Tk, ka

j 2
1J % 7

compute pressure command 319

http://lammps.sandia.gov

LIGGGHTS Users Manual

If no extra keywords are listed, the entire equations above are calculated which include a kinetic energy
(temperature) term and the virial as the sum of pair, bond, angle, dihedral, improper, kspace (long-range), and
fix contributions to the force on each atom. If any extra keywords are listed, then only those components are
summed to compute temperature or ke and/or the virial. The virial keyword means include all terms except
the kinetic energy ke.

The temperature and kinetic energy tensor is not calculated by this compute, but rather by the temperature
compute specified with the command. Normally this compute should calculate the temperature of all atoms
for consistency with the virial term, but any compute style that calculates temperature can be used, e.g. one
that excludes frozen atoms or other degrees of freedom.

Note that the N in the first formula above is really degrees-of-freedom divided by d = dimensionality, where
the DOF value is calcluated by the temperature compute. See the various compute temperature styles for
details.

A compute of this style with the ID of "thermo_press" is created when LAMMPS starts up, as if this
command were in the input script:

compute thermo_press all pressure thermo_temp

where "thermo_temp" is the ID of a similarly defined compute of style "temp". See the "thermo_style"
command for more details.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the pressure) and a global vector of length 6 (pressure tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be
in pressure units.

Restrictions: none

Related commands:

compute temp, compute stress/atom, thermo _style,

Default: none

compute pressure/cuda command 320

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/atom command

Syntax:
compute ID group-ID property/atom inputl input2

¢ ID, group-ID are documented in compute command
e property/atom = style name of this compute command
¢ input = one or more atom attributes

possible attributes = id, mol, type, mass,

X, y, 2z, XS, ys, zs, xu, yu, zu, ix,

vx, vy, vz, fx, fy, fz,

g, mux, muy, muz, mu,

radius, diameter, omegax, omegay,
angmomx, angmomy, angmomz,
shapex, shapey, shapez,

quatw, quati, quatj, quatk, tgx, tqy,

spin, eradius, ervel, erforce
endlx, endly, endlz, end2x, end2y,
cornerlx, cornerly, cornerlz,
corner2x, corner2y, corner2z,
corner3x, corner3y, corner3z

id = atom ID
mol = molecule ID
type = atom type

mass = atom mass
X,y,2z = unscaled atom coordinates
Xs,ys,zs = scaled atom coordinates

xXu,yu,zu = unwrapped atom coordinates
ix,iy,iz = box image that the atom is in

vx,vy,vz = atom velocities

fx,fy,fz = forces on atoms

g = atom charge

mux,muy,muz = orientation of dipole moment of atom

mu = magnitude of dipole moment of atom

radius,diameter = radius,diameter of spherical particle

omegax, omegay,omegaz = angular velocity of extended particle
angmomx, angmomy, angmomz = angular momentum of extended particle
shapex, shapey, shapez = 3 diameters of aspherical particle

quatw, quati, quatj,quatk = quaternion components for aspherical particles

tax,tqy,tgz = torque on extended particles
spin = electron spin

eradius = electron radius

ervel = electron radial velocity

erforce = electron radial force

endl2x, endl2y, endl2z = end points of line segment
conerl23x, cornerl23y, cornerl23z = corner points of triangle

Examples:

compute 1 all property/atom xs vx fx mux
compute 2 all property/atom type
compute 1 all property/atom ix iy iz

Description:

Define a computation that simply stores atom attributes for each atom in the group. This is useful so that the

values can be used by other output commands that take computes as inputs. See for example, the compute

compute property/atom command

321

http://lammps.sandia.gov

LIGGGHTS Users Manual

reduce, fix ave/atom, fix ave/histo, fix ave/spatial, and atom-style variable commands.

The list of possible attributes is the same as that used by the dump custom command, which describes their
meaning, with some additional quantities that are only defined for certain atom styles. Basically, this list gives
your input script access to any per-atom quantity stored by LAMMPS.

The values are stored in a per-atom vector or array as discussed below. Zeroes are stored for atoms not in the
specified group or for quantities that are not defined for a particular particle in the group (e.g. shapex if the
particle is not an ellipsoid).

The additional quantities only accessible via this command, and not directly via the dump custom command,
are as follows.

Shapex, shapey, and shapez are defined for ellipsoidal particles and define the 3d shape of each particle.
Quatw, quati, quatj, and quatk are also defined for ellipsoidal particles and store the 4-vector quaternion
representing the orientation of each particle. See the set command for an explanation of the quaternion vector.

Endlx, endly, endlz, end2x, end2y, end2z, are defined for line segment particles and define the end points of
each line segment.

Cornerlx, cornerly, cornerlz, corner2x, corner2y, corner2z, corner3x, corner3y, corner3z, are defined for
triangular particles and define the corner points of each triangle.

Output info:

This compute calculates a per-atom vector or per-atom array depending on the number of input values. If a
single input is specified, a per-atom vector is produced. If two or more inputs are specified, a per-atom array is
produced where the number of columns = the number of inputs. The vector or array can be accessed by any
command that uses per-atom values from a compute as input. See this section for an overview of LAMMPS
output options.

The vector or array values will be in whatever units the corresponding attribute is in, e.g. velocity units for vx,
charge units for g, etc.

Restrictions: none

Related commands:

dump custom, compute reduce, fix ave/atom, fix ave/spatial

Default: none

compute property/atom command 322

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/local command

Syntax:
compute ID group-ID property/local inputl input?2

¢ ID, group-ID are documented in compute command
e property/local = style name of this compute command
¢ input = one or more attributes

possible attributes = natoml natom2
patoml patom2
batoml batom2 btype
aatoml aatom2 aatom3 atype
datoml datom2 datom3 dtype
iatoml iatom2 iatom3 itype

natoml, natom2 = IDs of 2 atoms in each pair (within neighbor cutoff)
patoml, patom2 = IDs of 2 atoms in each pair (within force cutoff)
batoml, batom2 = IDs of 2 atoms in each bond

btype = bond type of each bond

aatoml, aatom2, aatom3 = IDs of 3 atoms in each angle

atype = angle type of each angle

datoml, datom2, datom3, datom4 = IDs of 4 atoms in each dihedral
dtype = dihedral type of each dihedral

iatoml, iatom2, iatom3, iatom4 = IDs of 4 atoms in each improper
itype = improper type of each improper

Examples:

compute 1 all property/local btype batoml batom?2
compute 1 all property/local atype aatom?2

Description:

Define a computation that stores the specified attributes as local data so it can be accessed by other output
commands. If the input attributes refer to bond information, then the number of datums generated, aggregated
across all processors, equals the number of bonds in the system. Ditto for pairs, angles, etc.

If multiple input attributes are specified then they must all generate the same amount of information, so that
the resulting local array has the same number of rows for each column. This means that only bond attributes
can be specified together, or angle attributes, etc. Bond and angle attributes can not be mixed in the same
compute property/local command.

If the inputs are pair attributes, the local data is generated by looping over the pairwise neighbor list. Info
about an individual pairwise interaction will only be included if both atoms in the pair are in the specified
compute group. For natom1 and natom?2, all atom pairs in the neighbor list are considered (out to the neighbor
cutoff = force cutoff + neighbor skin). For patomlI and patom?2, the distance between the atoms must be less
than the force cutoff distance for that pair to be included, as defined by the pair_style and pair_coeff
commands.

If the inputs are bond, angle, etc attributes, the local data is generated by looping over all the atoms owned on

a processor and extracting bond, angle, etc info. For bonds, info about an individual bond will only be
included if both atoms in the bond are in the specified compute group. Likewise for angles, dihedrals, etc.

compute property/local command 323

http://lammps.sandia.gov

LIGGGHTS Users Manual

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, output from the compute bond/local command can be combined with bond atom
indices from this command and output by the dump local command in a consistent way.

The natomlI and natom2, or patoml and patom?2 attributes refer to the atom IDs of the 2 atoms in each
pairwise interaction computed by the pair_style command.

IMPORTANT NOTE: For pairs, if two atoms LJ are involved in 1-2, 1-3, 1-4 interactions within the
molecular topology, their pairwise interaction may be turned off, and thus they may not appear in the neighbor
list, and will not be part of the local data created by this command. More specifically, this may be true of IJ
pairs with a weighting factor of 0.0; pairs with a non-zero weighting factor are included. The weighting
factors for 1-2, 1-3, and 1-4 pairwise interactions are set by the special bonds command.

The batomlI and batom? attributes refer to the atom IDs of the 2 atoms in each bond. The btype attribute refers
to the type of the bond, from 1 to Nbtypes = # of bond types. The number of bond types is defined in the data
file read by the read data command. The attributes that start with "a", "d", "i", refer to similar values for
angles, dihedrals, and impropers.

Output info:

This compute calculates a local vector or local array depending on the number of input values. The length of
the vector or number of rows in the array is the number of bonds, angles, etc. If a single input is specified, a
local vector is produced. If two or more inputs are specified, a local array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses local values
from a compute as input. See this section for an overview of LAMMPS output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands:

dump local, compute reduce

Default: none

compute property/local command 324

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/molecule command

Syntax:
compute ID group-ID property/molecule inputl input2 ...

¢ ID, group-ID are documented in compute command
® property/molecule = style name of this compute command
¢ input = one or more attributes

possible attributes = mol cout
mol = molecule ID
count = # of atoms in molecule

Examples:

compute 1 all property/molecule mol

Description:

Define a computation that stores the specified attributes as global data so it can be accessed by other output
commands and used in conjunction with other commands that generate per-molecule data, such as compute
com/molecule and compute msd/molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

The mol attribute is the molecule ID. This attribute can be used to produce molecule IDs as labels for
per-molecule datums generated by other computes or fixes when they are output to a file, e.g. by the fix
ave/time command.

The count attribute is the number of atoms in the molecule.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length
of the vector or number of rows in the array is the number of molecules. If a single input is specified, a global
vector is produced. If two or more inputs are specified, a global array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses global values
from a compute as input. See this section for an overview of LAMMPS output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands: none

Default: none

compute property/molecule command 325

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute rdf command

compute rdf/gran command

Syntax:
compute ID group-ID style Nbin itypel jtypel itype2 jtype2 ...

¢ ID, group-ID are documented in compute command

e style = rdf or rdf/gran

¢ rdf = style name of this compute command

¢ Nbin = number of RDF bins

¢ itypeN = central atom type for Nth RDF histogram (see asterisk form below)

¢ jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below)

Examples:

compute 1 all rdf 100

compute 1 all rdf 100 1 1

compute 1 all rdf 100 * 3

compute 1 fluid rdf 500 1 1 1 2 2 1 2 2
compute 1 fluid rdf 500 1*3 2 5 *10
Description:

Define a computation that calculates the radial distribution function (RDF), also called g(r), and the
coordination number for a group of particles. Both are calculated in histogram form by binning pairwise
distances into Nbin bins from 0.0 to the maximum force cutoff defined by the pair_style command. The bins
are of uniform size in radial distance. Thus a single bin encompasses a thin shell of distances in 3d and a thin
ring of distances in 2d.

For style rdf/gran, the bins span from 0.0 to the maximum force cutoff + the neighbor skin (which makes
more sense for granular systems) so you may need to choose the skin appropriately in order to get meaningful
results.

The itypeN and jtypeN arguments are optional. These arguments must come in pairs. If no pairs are listed, then
a single histogram is computed for g(r) between all atom types. If one or more pairs are listed, then a separate
histogram is generated for each itype,jtype pair.

The itypeN and jtypeN settings can be specified in one of two ways. An explicit numeric value can be used, as
in the 4th example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk
means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

If both itypeN and jtypeN are single values, as in the 4th example above, this means that a g(r) is computed
where atoms of type itypeN are the central atom, and atoms of type jtypeN are the distribution atom. If either
itypeN and jtypeN represent a range of values via the wild-card asterisk, as in the 5th example above, this
means that a g(r) is computed where atoms of any of the range of types represented by itypeN are the central
atom, and atoms of any of the range of types represented by jfrypeN are the distribution atom.

Pairwise distances are generated by looping over a pairwise neighbor list, just as they would be in a pair_style
computation. The distance between two atoms I and J is included in a specific histogram if the following

compute rdf command 326

http://lammps.sandia.gov

LIGGGHTS Users Manual

criteria are met:

e atoms L,J are both in the specified compute group

e the distance between atoms 1,J is less than the maximum force cutoff
e the type of the I atom matches itypeN (one or a range of types)

e the type of the J atom matches jtypeN (one or a range of types)

It is OK if a particular pairwise distance is included in more than one individual histogram, due to the way the
itypeN and jtypeN arguments are specified.

The g(r) value for a bin is calculated from the histogram count by scaling it by the idealized number of how
many counts there would be if atoms of type jtypeN were uniformly distributed. Thus it involves the count of
itypeN atoms, the count of jtypeN atoms, the volume of the entire simulation box, and the volume of the bin's
thin shell in 3d (or the area of the bin's thin ring in 2d).

A coordination number coord(r) is also calculated, which is the sum of g(r) values for all bins up to and
including the current bin.

The simplest way to output the results of the compute rdf calculation to a file is to use the fix ave/time
command, for example:

compute myRDF all rdf 50
fix 1 all ave/time 100 1 100 c_myRDF file tmp.rdf mode vector

Output info:

This compute calculates a global array with the number of rows = Nbins, and the number of columns = 1 +
2*Npairs, where Npairs is the number of LJ pairings specified. The first column has the bin coordinate (center
of the bin), Each successive set of 2 columns has the g(r) and coord(r) values for a specific set of irypeN
versus jtypeN interactions, as described above. These values can be used by any command that uses a global
values from a compute as input. See Section _howto 15 for an overview of LAMMPS output options.

The array values calculated by this compute are all "intensive".

The first column of array values will be in distance units. The g(r) columns of array values are normalized
numbers >= 0.0. The coordination number columns of array values are also numbers >= 0.0.

Restrictions:

The RDF is not computed for distances longer than the force cutoff, since processors (in parallel) don't know
about atom coordinates for atoms further away than that distance. If you want an RDF for larger distances,
you'll need to post-process a dump file.

Related commands:

fix ave/time

Default: none

compute rdf/gran command 327

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute reduce command

compute reduce/region command

Syntax:
compute ID group-ID style arg mode inputl input2 ... keyword args

¢ ID, group-ID are documented in compute command
o style = reduce or reduce/region

reduce arg = none
reduce/region arg = region-ID
region-ID = ID of region to use for choosing atoms
® mode = sum or min or max or ave
¢ one or more inputs can be listed

® input =X, y, z, VX, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f ID[N], v_name

X,¥,2,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
c_ID = per-atom or local vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom or local array calculated by a compute with ID
f_ID = per-atom or local vector calculated by a fix with ID

f_ID[I] = Ith column of per-atom or local array calculated by a fix with ID
v_name = per-atom vector calculated by an atom-style variable with name

¢ zero or more keyword/args pairs may be appended
¢ keyword = replace

replace args = vecl vec2

vecl = reduced value from this input vector will be replaced

vec2 = replace it with vecl[N] where N is index of max/min value from vec2
Examples:
compute 1 all reduce sum c_force
compute 1 all reduce/region subbox sum c_force
compute 2 all reduce min c_press2 f_ave v_myKE
compute 3 fluid reduce max c_indexl c_index2 c_dist replace 1 3 replace 2 3
Description:

Define a calculation that "reduces" one or more vector inputs into scalar values, one per listed input. The
inputs can be per-atom or local quantities; they cannot be global quantities. Atom attributes are per-atom
quantities, computes and fixes may generate any of the three kinds of quantities, and atom-style variables
generate per-atom quantities. See the variable command and its special functions which can perform the same
operations as the compute reduce command on global vectors.

The reduction operation is specified by the mode setting. The sum option adds the values in the vector into a
global total. The min or max options find the minimum or maximum value across all vector values. The ave
setting adds the vector values into a global total, then divides by the number of values in the vector.

Each listed input is operated on independently. For per-atom inputs, the group specified with this command
means only atoms within the group contribute to the result. For per-atom inputs, if the compute reduce/region
command is used, the atoms must also currently be within the region. Note that an input that produces
per-atom quantities may define its own group which affects the quantities it returns. For example, if a
compute is used as an input which generates a per-atom vector, it will generate values of 0.0 for atoms that are

compute reduce command 328

http://lammps.sandia.gov

LIGGGHTS Users Manual

not in the group specified for that compute.

Each listed input can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an atom-style variable.

The atom attribute values (X,y,z,vx,vy,vz,fx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script.
Computes can generate per-atom or local quantities. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed interger is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their
own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. Fixes
can generate per-atom or local quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute reduce references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write
code for their own fix style and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. It must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and
various per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a
very general means of generating per-atom quantities to reduce.

If the replace keyword is used, two indices vec! and vec2 are specified, where each index ranges from 1 to the
of input values. The replace keyword can only be used if the mode is min or max. It works as follows. A
min/max is computed as usual on the vec2 input vector. The index N of that value within vec2 is also stored.
Then, instead of performing a min/max on the vec/ input vector, the stored index is used to select the Nth
element of the vecl vector.

Thus, for example, if you wish to use this compute to find the bond with maximum stretch, you can do it as
follows:

compute 1 all property/local batoml batom2

compute 2 all bond/local dist

compute 3 all reduce max c_1[1] c_1[2] c_2 replace 1 3 replace 2 3
thermo_style custom step temp c_3[1] c_3[2] c_31[3]

The first two input values in the compute reduce command are vectors with the IDs of the 2 atoms in each
bond, using the compute property/local command. The last input value is bond distance, using the compute
bond/local command. Instead of taking the max of the two atom ID vectors, which does not yield useful
information in this context, the replace keywords will extract the atom IDs for the two atoms in the bond of
maximum stretch. These atom IDs and the bond stretch will be printed with thermodynamic output.

If a single input is specified this compute produces a global scalar value. If multiple inputs are specified, this
compute produces a global vector of values, the length of which is equal to the number of inputs specified.

As discussed below, for sum mode, the value(s) produced by this compute are all "extensive", meaning their
value scales linearly with the number of atoms involved. If normalized values are desired, this compute can be
accessed by the thermo_style custom command with thermo _modify norm yes set as an option. Or it can be
accessed by a variable that divides by the appropriate atom count.

compute reduce/region command 329

LIGGGHTS Users Manual

Output info:

This compute calculates a global scalar if a single input value is specified or a global vector of length N where
N is the number of inputs, and which can be accessed by indices 1 to N. These values can be used by any
command that uses global scalar or vector values from a compute as input. See Section howto 15 for an
overview of LAMMPS output options.

All the scalar or vector values calculated by this compute are "intensive", except when the sum mode is used
on per-atom or local vectors, in which case the calculated values are "extensive".

The scalar or vector values will be in whatever units the quantities being reduced are in.

Restrictions: none
Related commands:
compute, fix, variable

Default: none

compute reduce/region command 330

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute slice command

Syntax:
compute ID group-ID slice Nstart Nstop Nskip inputl input?2

¢ ID, group-ID are documented in compute command

¢ slice = style name of this compute command

¢ Nstart = starting index within input vector(s)

¢ Nstop = stopping index within input vector(s)

¢ Nskip = extract every Nskip elements from input vector(s)
¢ input = c_ID, c_ID[N], f_ID, f_ID[N]

c_ID = global vector calculated by a compute with ID

c_ID[I] = Ith column of global array calculated by a compute with ID
f_ID = global vector calculated by a fix with ID
f_ID[I] = Ith column of global array calculated by a fix with ID

Examples:

compute 1 all slice 1 100 10 c_msdmol[4]
compute 1 all slice 301 400 1 c_msdmol([4]

Description:

Define a calculation that "slices" one or more vector inputs into smaller vectors, one per listed input. The
inputs can be global quantities; they cannot be per-atom or local quantities. Computes and fixes may generate
any of the three kinds of quantities. Variables do not generate global vectors. The group specified with this
command is ignored.

The values extracted from the input vector(s) are determined by the Nstart, Nstop, and Nskip parameters. The
elements of an input vector of length N are indexed from 1 to N. Starting at element Nstart, every Mth
element is extracted, where M = Nskip, until element Nstop is reached. The extracted quantities are stored as a
vector, which is typically shorter than the input vector.

Each listed input is operated on independently to produce one output vector. Each listed input must be a
global vector or column of a global array calculated by another compute or fix.

If an input value begins with "c_", a compute ID must follow which has been previously defined in the input
script and which generates a global vector or array. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed interger is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their
own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script and
which generates a global vector or array. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute slice references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write
code for their own fix style and add them to LAMMPS.

If a single input is specified this compute produces a global vector, even if the length of the vector is 1. If
multiple inputs are specified, then a global array of values is produced, with the number of columns equal to

compute slice command 331

http://lammps.sandia.gov

LIGGGHTS Users Manual

the number of inputs specified.

Output info:

This compute calculates a global vector if a single input value is specified or a global array with N columns
where N is the number of inputs. The length of the vector or the number of rows in the array is equal to the
number of values extracted from each input vector. These values can be used by any command that uses
global vector or array values from a compute as input. See this section for an overview of LAMMPS output
options.

The vector or array values calculated by this compute are simply copies of values generated by computes or
fixes that are input vectors to this compute. If there is a single input vector of intensive and/or extensive
values, then each value in the vector of values calculated by this compute will be "intensive" or "extensive",
depending on the corresponding input value. If there are multiple input vectors, and all the values in them are
intensive, then the array values calculated by this compute are "intensive". If there are multiple input vectors,
and any value in them is extensive, then the array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none

Related commands:

compute, fix, compute reduce

Default: none

compute slice command 332

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute stress/atom command

Syntax:
compute ID group-ID stress/atom keyword ...

¢ ID, group-ID are documented in compute command

e stress/atom = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial

Examples:

compute 1 mobile stress/atom
compute 1 all stress/atom pair bond

Description:
Define a computation that computes the symmetric per-atom stress tensor for each atom in a group. The tensor
for each atom has 6 components and is stored as a 6-element vector in the following order: xx, yy, zz, Xy, Xz,

yz. See the compute pressure command if you want the stress tensor (pressure) of the entire system.

The stress tensor for atom / is given by the following formula, where a and b take on values x,y,z to generate
the 6 components of the symmetric tensor:

Np
S = — |muvvs A %Z (r1, FY, + 12, F3,) iZ{rl Fy, + 1o, Fo,
==l n=1
1 Ny Ny
—Z O TG o W £) ZU[-.FH. oo F2y, + T3, Fa, + 14, Fy,)
Ni Ny
e Z 181, + T2, Foy + T3, Fay + 14, Fy,) + Kspace(ry,, F; Z gl I

The first term is a kinetic energy contribution for atom /. The second term is a pairwise energy contribution
where n loops over the Np neighbors of atom /, r/ and r2 are the positions of the 2 atoms in the pairwise
interaction, and F/ and F2 are the forces on the 2 atoms resulting from the pairwise interaction. The third term
is a bond contribution of similar form for the Nb bonds which atom / is part of. There are similar terms for the
Na angle, Nd dihedral, and Ni improper interactions atom / is part of. There is also a term for the KSpace
contribution from long-range Coulombic interactions, if defined. Finally, there is a term for the Nf fixes that
apply internal constraint forces to atom /. Currently, only the fix shake and fix rigid commands contribute to
this term.

As the coefficients in the formula imply, a virial contribution produced by a small set of atoms (e.g. 4 atoms
in a dihedral or 3 atoms in a Tersoff 3-body interaction) is assigned in equal portions to each atom in the set.
E.g. 1/4 of the dihedral virial to each of the 4 atoms, or 1/3 of the fix virial due to SHAKE constraints applied
to atoms in a a water molecule via the fix shake command.

compute stress/atom command 333

http://lammps.sandia.gov

LIGGGHTS Users Manual

If no extra keywords are listed, all of the terms in this formula are included in the per-atom stress tensor. If
any extra keywords are listed, only those terms are summed to compute the tensor. The virial keyword means
include all terms except the kinetic energy ke.

Note that the stress for each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

The dihedral style charmm style calculates pairwise interactions between 1-4 atoms. The virial contribution
of these terms is included in the pair virial, not the dihedral virial.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and a related
method for PPPM, as specified by the kspace style pppm command. For PPPM, the calcluation requires 6
extra FFTs each timestep that per-atom stress is calculated. Thus it can significantly increase the cost of the
PPPM calculation if it is needed on a large fraction of the simulation timesteps.

Note that as defined in the formula, per-atom stress is the negative of the per-atom pressure tensor. It is also
really a stress*volume formulation, meaning the computed quantity is in units of pressure*volume. It would
need to be divided by a per-atom volume to have units of stress (pressure), but an individual atom's volume is
not well defined or easy to compute in a deformed solid or a liquid. Thus, if the diagonal components of the
per-atom stress tensor are summed for all atoms in the system and the sum is divided by dV, where d =
dimension and V is the volume of the system, the result should be -P, where P is the total pressure of the
system.

These lines in an input script for a 3d system should yield that result. L.e. the last 2 columns of thermo output
will be the same:

compute peratom all stress/atom

compute p all reduce sum c_peratom[l] c_peratom[2] c_peratom[3]
variable press equal —(c_pl[ll+c_pl[2]+c_pl[3]1)/(3*vol)
thermo_style custom step temp etotal press v_press

Output info:

This compute calculates a per-atom array with 6 columns, which can be accessed by indices 1-6 by any
command that uses per-atom values from a compute as input. See Section _howto 15 for an overview of
LAMMPS output options.

The per-atom array values will be in pressure*volume units as discussed above.

Restrictions: none

Related commands:

compute pe, compute pressure

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

compute stress/atom command 334

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp command

compute temp/cuda command

Syntax:
compute ID group-ID temp

¢ ID, group-ID are documented in compute command
¢ temp = style name of this compute command

Examples:

compute 1 all temp
compute myTemp mobile temp

Description:

Define a computation that calculates the temperature of a group of atoms. A compute of this style can be used
by any command that computes a temperature, e.g. thermo modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the
group, k = Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the Xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

A compute of this style with the ID of "thermo_temp" is created when LAMMPS starts up, as if this command
were in the input script:

compute thermo_temp all temp
See the "thermo_style" command for more details.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

compute temp command 335

http://lammps.sandia.gov

LIGGGHTS Users Manual

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp/partial, compute temp/region, compute pressure

Default: none

compute temp/cuda command 336

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/asphere command

Syntax:
compute ID group-ID temp/asphere keyword value

¢ ID, group-ID are documented in compute command
¢ temp/asphere = style name of this compute command
¢ zero or more keyword/value pairs may be appended
¢ keyword = bias or dof

bias value = bias-IDuniform or gaussian

bias-ID = ID of a temperature compute that removes a velocity bias

dof value = all or rotate
all = compute temperature of translational and rotational degrees of freedom
rotate = compute temperature of just rotational degrees of freedom

Examples:

compute 1 all temp/asphere
compute myTemp mobile temp/asphere bias tempCOM
compute myTemp mobile temp/asphere dof rotate

Description:

Define a computation that calculates the temperature of a group of aspherical particles, including a
contribution from both their translational and rotational kinetic energy. This differs from the usual compute
temp command, which assumes point particles with only translational kinetic energy.

Only finite-size particles (aspherical or spherical) can be included in the group. For 3d finite-size particles,
each has 6 degrees of freedom (3 translational, 3 rotational). For 2d finite-size particles, each has 3 degrees of
freedom (2 translational, 1 rotational).

IMPORTANT NOTE: This choice for degrees of freedom (dof) assumes that all finite-size aspherical or
spherical particles in your model will freely rotate, sampling all their rotational dof. It is possible to use a
combination of interaction potentials and fixes that induce no torque or otherwise constrain some of all of
your particles so that this is not the case. Then there are less dof and you should use the compute modify
extra command to adjust the dof accordingly.

For example, an aspherical particle with all three of its shape parameters the same is a sphere. If it does not
rotate, then it should have 3 dof instead of 6 in 3d (or 2 instead of 3 in 2d). A uniaxial aspherical particle has
two of its three shape parameters the same. If it does not rotate around the axis perpendicular to its circular
cross section, then it should have 5 dof instead of 6 in 3d.

The translational kinetic energy is computed the same as is described by the compute temp command. The
rotational kinetic energy is computed as 1/2 I w”2, where I is the inertia tensor for the aspherical particle and
w is its angular velocity, which is computed from its angular momentum.

IMPORTANT NOTE: For 2d models, particles are treated as ellipsoids, not ellipses, meaning their moments
of inertia will be the same as in 3d.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the
components of the tensor is the same as the above formula, except that vA2 and w”2 are replaced by vx*vy

and wx*wy for the xy component, and the appropriate elements of the inertia tensor are used. The 6

compute temp/asphere command 337

http://lammps.sandia.gov

LIGGGHTS Users Manual

components of the vector are ordered xx, yy, 7z, Xy, Xz, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

This compute subtracts out translational degrees-of-freedom due to fixes that constrain molecular motion,
such as fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints
will be computed correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option
of the compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The keyword/value option pairs are used in the following ways.

For the bias keyword, bias-ID refers to the ID of a temperature compute that removes a "bias" velocity from
each atom. This allows compute temp/sphere to compute its thermal temperature after the translational kinetic
energy components have been altered in a prescribed way, e.g. to remove a velocity profile. Thermostats that
use this compute will work with this bias term. See the doc pages for individual computes that calculate a
temperature and the doc pages for fixes that perform thermostatting for more details.

For the dof keyword, a setting of all calculates a temperature that includes both translational and rotational
degrees of freedom. A setting of rotate calculates a temperature that includes only rotational degrees of
freedom.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

This compute requires that atoms store angular momementum and a quaternion as defined by the atom style
ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:

compute temp

Default: none

compute temp/asphere command 338

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/com command

Syntax:
compute ID group—-ID temp/com

¢ ID, group-ID are documented in compute command
¢ temp/com = style name of this compute command

Examples:

compute 1 all temp/com
compute myTemp mobile temp/com

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out the
center-of-mass velocity of the group. This is useful if the group is expected to have a non-zero net velocity for
some reason. A compute of this style can be used by any command that computes a temperature, e.g.

thermo modify, fix temp/rescale, fix npt, etc.

After the center-of-mass velocity has been subtracted from each atom, the temperature is calculated by the
formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v*2), dim =
2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of the center-of-mass velocity by this fix is essentially computing the temperature after a "bias"
has been removed from the velocity of the atoms. If this compute is used with a fix command that performs
thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal
velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this way

include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:
This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector

values from a compute as input. See this section for an overview of LAMMPS output options.

compute temp/com command 339

http://lammps.sandia.gov

LIGGGHTS Users Manual

The scalar value calculated by this compute is "intensive". The vector values are "extensive".
The scalar value will be in temperature units. The vector values will be in energy units.
Restrictions: none

Related commands:

compute temp

Default: none

compute temp/com command 340

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/deform command

Syntax:
compute ID group-ID temp/deform

¢ ID, group-ID are documented in compute command
¢ temp/deform = style name of this compute command

Examples:
compute myTemp all temp/deform
Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a streaming
velocity induced by the simulation box changing size and/or shape, for example in a non-equilibrium MD
(NEMD) simulation. The size/shape change is induced by use of the fix deform command. A compute of this
style is created by the fix nvt/sllod command to compute the thermal temperature of atoms for thermostatting
purposes. A compute of this style can also be used by any command that computes a temperature, e.g.

thermo modify, fix temp/rescale, fix npt, etc.

The deformation fix changes the box size and/or shape over time, so each atom in the simulation box can be
thought of as having a "streaming" velocity. For example, if the box is being sheared in x, relative to y, then
atoms at the bottom of the box (low y) have a small x velocity, while atoms at the top of the box (hi y) have a
large x velocity. This position-dependent streaming velocity is subtracted from each atom's actual velocity to
yield a thermal velocity which is used to compute the temperature.

IMPORTANT NOTE: Fix deform has an option for remapping either atom coordinates or velocities to the
changing simulation box. When using this compute in conjunction with a deforming box, fix deform should
NOT remap atom positions, but rather should let atoms respond to the changing box by adjusting their own
velocities (or let fix deform remap the atom velocities, see it's remap option). If fix deform does remap atom
positions, then they appear to move with the box but their velocity is not changed, and thus they do NOT have
the streaming velocity assumed by this compute. LAMMPS will warn you if fix deform is defined and its
remap setting is not consistent with this compute.

After the streaming velocity has been subtracted from each atom, the temperature is calculated by the formula
KE =dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v*2), dim =2 or 3 =
dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature. Note that v in the kinetic energy formula is the atom's thermal velocity.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the Xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of the box deformation velocity component by this fix is essentially computing the temperature

after a "bias" has been removed from the velocity of the atoms. If this compute is used with a fix command
that performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining

compute temp/deform command 341

http://lammps.sandia.gov

LIGGGHTS Users Manual

thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this
way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp/ramp, compute temp/profile, fix deform, fix nvt/sllod

Default: none

compute temp/deform command 342

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/deform/eff command
Syntax:
compute ID group—-ID temp/deform/eff

¢ ID, group-ID are documented in compute command
¢ temp/deform/eff = style name of this compute command

Examples:

compute myTemp all temp/deform/eff

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force
field model, after subtracting out a streaming velocity induced by the simulation box changing size and/or
shape, for example in a non-equilibrium MD (NEMD) simulation. The size/shape change is induced by use of
the fix deform/eff command. A compute of this style is created by the fix nvt/sllod/eff command to compute
the thermal temperature of atoms for thermostatting purposes. A compute of this style can also be used by any
command that computes a temperature, e.g. thermo modify, fix npt/eff, etc.

The calculation performed by this compute is exactly like that described by the compute temp/deform
command, except that the formula for the temperature includes the radial electron velocity contributions, as
discussed by the compute temp/eff command. Note that only the translational degrees of freedom for each
nuclei or electron are affected by the streaming velocity adjustment. The radial velocity component of the
electrons is not affected.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:
compute temp/ramp, fix deform/eff, fix nvt/sllod/eff

Default: none

compute temp/deform/eff command 343

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/eff command

Syntax:
compute ID group-ID temp/eff

¢ ID, group-ID are documented in compute command
¢ temp/eff = style name of this compute command

Examples:

compute 1 all temp/eff
compute myTemp mobile temp/eff

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force
field model. A compute of this style can be used by commands that compute a temperature, e.g.

thermo modify, fix npt/eff, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v*2 for nuclei and sum of 1/2 (m v*2 + 3/4 m s*2) for electrons, where s includes the
radial electron velocity contributions), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms
(only total number of nuclei in the eFF (see the pair_eff command) in the group, k = Boltzmann constant, and
T = temperature. This expression is summed over all nuclear and electronic degrees of freedom, essentially by
setting the kinetic contribution to the heat capacity to 3/2k (where only nuclei contribute). This subtlety is
valid for temperatures well below the Fermi temperature, which for densities two to five times the density of
liquid H2 ranges from 86,000 to 170,000 K.

IMPORTANT NOTE: For eFF models, in order to override the default temperature reported by LAMMPS in
the thermodynamic quantities reported via the thermo command, the user should apply a thermo modify
command, as shown in the following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

A 6-component kinetic energy tensor is also calculated by this compute for use in the computation of a
pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
v/A2 is replaced by vx * vy for the xy component, etc. For the eFF, again, the radial electronic velocities are
also considered.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

compute temp/eff command 344

http://lammps.sandia.gov

LIGGGHTS Users Manual

Output info:

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms
in the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the
simulation.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute temp/partial, compute temp/region, compute pressure

Default: none

compute temp/eff command 345

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/partial command

compute temp/partial/cuda command

Syntax:
compute ID group-ID temp/partial xflag yflag zflag

¢ ID, group-ID are documented in compute command
¢ temp/partial = style name of this compute command
¢ xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension

Examples:
compute newT flow temp/partial 1 1 O
Description:

Define a computation that calculates the temperature of a group of atoms, after excluding one or more velocity
components. A compute of this style can be used by any command that computes a temperature, e.g.

thermo modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v*2), dim = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature. The calculation of KE excludes the x, y, or z dimensions if xflag,
yflag, or zflag = 0. The dim parameter is adjusted to give the correct number of degrees of freedom.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
calculation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the Xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of velocity components by this fix is essentially computing the temperature after a "bias" has
been removed from the velocity of the atoms. If this compute is used with a fix command that performs
thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal
velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this way

include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for

compute temp/partial command 346

http://lammps.sandia.gov

LIGGGHTS Users Manual

round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp, compute temp/region, compute pressure

Default: none

compute temp/partial/cuda command 347

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/profile command

Syntax:
compute ID group-ID temp/profile xflag yflag zflag binstyle args

¢ ID, group-ID are documented in compute command

¢ temp/profile = style name of this compute command

¢ xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension
¢ binstyle = x or y or z or xy or yZ Or Xz Or xyz

X arg = Nx

y arg = Ny

z arg = Nz

xy args = Nx Ny

vz args = Ny Nz

xz args = Nx Nz

xyz args = Nx Ny Nz

Nx,Ny,Nz = number of velocity bins in x,y,z dimensions

Examples:

compute myTemp flow temp/profile 1 1 1 x 10
compute myTemp flow temp/profile 0 1 1 xyz 20 20 20

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a
spatially-averaged velocity field, before computing the kinetic energy. This can be useful for thermostatting a
collection of atoms undergoing a complex flow, e.g. via a profile-unbiased thermostat (PUT) as described in
(Evans). A compute of this style can be used by any command that computes a temperature, e.g.

thermo modify, fix temp/rescale, fix npt, etc.

The xflag, yflag, zflag settings determine which components of average velocity are subtracted out.

The binstyle setting and its Nx, Ny, Nz arguments determine how bins are setup to perform spatial averaging.
"Bins" can be 1d slabs, 2d pencils, or 3d bricks depending on which binstyle is used. The simulation box is
partitioned conceptually into Nx by Ny by Nz bins. Depending on the binstyle, you may only specify one or
two of these values; the others are effectively set to 1 (no binning in that dimension). For non-orthogonal
(triclinic) simulation boxes, the bins are "tilted" slabs or pencils or bricks that are parallel to the tilted faces of
the box. See the region prism command for a discussion of the geometry of tilted boxes in LAMMPS.

When a temperature is computed, the velocity for the set of atoms that are both in the compute group and in
the same spatial bin is summed to compute an average velocity for the bin. This bias velocity is then
subtracted from the velocities of individual atoms in the bin to yield a thermal velocity for each atom. Note
that if there is only one atom in the bin, it's thermal velocity will thus be 0.0.

After the spatially-averaged velocity field has been subtracted from each atom, the temperature is calculated
by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v*2),
dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above

compute temp/profile command 348

http://lammps.sandia.gov

LIGGGHTS Users Manual

formula, except that v/2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xx, yy, zz, Xy, Xz, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of the spatially-averaged velocity field by this fix is essentially computing the temperature after a
"bias" has been removed from the velocity of the atoms. If this compute is used with a fix command that
performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining
thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this

way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting. Using this compute in conjunction with a thermostatting fix, as explained there, will
effectively implement a profile-unbiased thermostat (PUT), as described in (Evans).

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

You should not use too large a velocity-binning grid, especially in 3d. In the current implementation, the
binned velocity averages are summed across all processors, so this will be inefficient if the grid is too large,
and the operation is performed every timestep, as it will be for most thermostats.

Related commands:

compute temp, compute temp/ramp, compute temp/deform, compute pressure

Default:

The option default is units = lattice.

(Evans) Evans and Morriss, Phys Rev Lett, 56, 2172-2175 (1986).

compute temp/profile command 349

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/ramp command

Syntax:
compute ID group-ID temp/ramp vdim vlo vhi dim clo chi keyword value

¢ ID, group-ID are documented in compute command

¢ temp/ramp = style name of this compute command

¢ vdim = vx or vy or vz

¢ vlo,vhi = subtract velocities between vlo and vhi (velocity units)
edim=xoryorz

¢ clo,chi = lower and upper bound of domain to subtract from (distance units)
¢ zero or more keyword/value pairs may be appended

¢ keyword = units

units value = lattice or box

Examples:

compute 2nd middle temp/ramp vx 0 8 y 2 12 units lattice
Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out an ramped
velocity profile before computing the kinetic energy. A compute of this style can be used by any command

that computes a temperature, e.g. thermo modify, fix temp/rescale, fix npt, etc.

The meaning of the arguments for this command which define the velocity ramp are the same as for the
velocity ramp command which was presumably used to impose the velocity.

After the ramp velocity has been subtracted from the specified dimension for each atom, the temperature is
calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of
1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature.

The units keyword determines the meaning of the distance units used for coordinates (c1,c2) and velocities
(vlo,vhi). A box value selects standard distance units as defined by the units command, e.g. Angstroms for
units = real or metal. A lattice value means the distance units are in lattice spacings; e.g. velocity = lattice
spacings / tau. The lattice command must have been previously used to define the lattice spacing.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of the ramped velocity component by this fix is essentially computing the temperature after a
"bias" has been removed from the velocity of the atoms. If this compute is used with a fix command that
performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining
thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this

way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

compute temp/ramp command 350

http://lammps.sandia.gov

LIGGGHTS Users Manual

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp, compute temp/profie, compute temp/deform, compute pressure

Default:

The option default is units = lattice.

compute temp/ramp command 351

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/region command

Syntax:
compute ID group-ID temp/region region-ID

¢ ID, group-ID are documented in compute command
¢ temp/region = style name of this compute command
¢ region-ID = ID of region to use for choosing atoms

Examples:
compute mine flow temp/region boundary
Description:

Define a computation that calculates the temperature of a group of atoms in a geometric region. This can be
useful for thermostatting one portion of the simulation box. E.g. a McDLT simulation where one side is
cooled, and the other side is heated. A compute of this style can be used by any command that computes a

temperature, e.g. thermo _modify, fix temp/rescale, etc.

Note that a region-style temperature can be used to thermostat with fix temp/rescale or fix langevin, but
should probably not be used with Nose/Hoover style fixes (fix nvt, fix npt, or fix nph), if the
degrees-of-freedom included in the computed T varies with time.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in both
the group and region, k = Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is compute each time the temperature is evaluated since
it is assumed atoms can enter/leave the region. Thus there is no need to use the dynamic option of the
compute modify command for this compute style.

The removal of atoms outside the region by this fix is essentially computing the temperature after a "bias" has
been removed, which in this case is the velocity of any atoms outside the region. If this compute is used with a
fix command that performs thermostatting then this bias will be subtracted from each atom, thermostatting of
the remaining thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes
that work in this way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin. This means any
of the thermostatting fixes can operate on a geometric region of atoms, as defined by this compute.

Unlike other compute styles that calculate temperature, this compute does NOT currently subtract out
degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake and fix rigid. If needed the
subtracted degrees-of-freedom can be altered using the extra option of the compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

compute temp/region command 352

http://lammps.sandia.gov

LIGGGHTS Users Manual
Output info:
This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.
The scalar value calculated by this compute is "intensive". The vector values are "extensive".
The scalar value will be in temperature units. The vector values will be in energy units.
Restrictions: none
Related commands:
compute temp, compute pressure

Default: none

compute temp/region command 353

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/region/eff command

Syntax:
compute ID group-ID temp/region/eff region-ID

¢ ID, group-ID are documented in compute command
¢ temp/region/eff = style name of this compute command
¢ region-ID = ID of region to use for choosing atoms

Examples:

compute mine flow temp/region/eff boundary

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force
field model, within a geometric region using the electron force field. A compute of this style can be used by

commands that compute a temperature, e.g. thermo _modify.

The operation of this compute is exactly like that described by the compute temp/region command, except that
the formula for the temperature itself includes the radial electron velocity contributions, as discussed by the

compute temp/eff command.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute temp/region, compute temp/eff, compute pressure

Default: none

compute temp/region/eff command 354

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/rotate command

Syntax:
compute ID group—-ID temp/rotate

¢ ID, group-ID are documented in compute command
¢ temp/rotate = style name of this compute command

Examples:
compute Tbead bead temp/rotate
Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out the
center-of-mass velocity and angular velocity of the group. This is useful if the group is expected to have a
non-zero net velocity and/or global rotation motion for some reason. A compute of this style can be used by
any command that computes a temperature, e.g. thermo modify, fix temp/rescale, fix npt, etc.

After the center-of-mass velocity and angular velocity has been subtracted from each atom, the temperature is
calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of
1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v/2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xX, yy, 7z, Xy, Xz, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute modify command if this is not the case.

The removal of the center-of-mass velocity and angular velocity by this fix is essentially computing the
temperature after a "bias" has been removed from the velocity of the atoms. If this compute is used with a fix
command that performs thermostatting then this bias will be subtracted from each atom, thermostatting of the
remaining thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that
work in this way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:
This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which

can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

compute temp/rotate command 355

http://lammps.sandia.gov

LIGGGHTS Users Manual

The scalar value calculated by this compute is "intensive". The vector values are "extensive".
The scalar value will be in temperature units. The vector values will be in energy units.
Restrictions:

This compute is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute temp

Default: none

compute temp/rotate command 356

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/sphere command

Syntax:
compute ID group-ID temp/sphere keyword value ...

¢ ID, group-ID are documented in compute command
¢ temp/sphere = style name of this compute command
¢ zero or more keyword/value pairs may be appended
¢ keyword = bias or dof

bias value = bias-IDuniform or gaussian

bias-ID = ID of a temperature compute that removes a velocity bias

dof value = all or rotate
all = compute temperature of translational and rotational degrees of freedom
rotate = compute temperature of just rotational degrees of freedom

Examples:

compute 1 all temp/sphere
compute myTemp mobile temp/sphere bias tempCOM
compute myTemp mobile temp/sphere dof rotate

Description:

Define a computation that calculates the temperature of a group of spherical particles, including a contribution
from both their translational and rotational kinetic energy. This differs from the usual compute temp
command, which assumes point particles with only translational kinetic energy.

Both point and finite-size particles can be included in the group. Point particles do not rotate, so they have
only 3 translational degrees of freedom. For 3d spherical particles, each has 6 degrees of freedom (3
translational, 3 rotational). For 2d spherical particles, each has 3 degrees of freedom (2 translational, 1
rotational).

IMPORTANT NOTE: This choice for degrees of freedom (dof) assumes that all finite-size spherical particles
in your model will freely rotate, sampling all their rotational dof. It is possible to use a combination of
interaction potentials and fixes that induce no torque or otherwise constrain some of all of your particles so
that this is not the case. Then there are less dof and you should use the compute modify extra command to
adjust the dof accordingly.

The translational kinetic energy is computed the same as is described by the compute temp command. The
rotational kinetic energy is computed as 1/2 I w*2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the
components of the tensor is the same as the above formulas, except that vA2 and w”2 are replaced by vx*vy
and wx*wy for the xy component. The 6 components of the vector are ordered xx, yy, zz, Xy, Xz, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use

the dynamic option of the compute modify command if this is not the case.

compute temp/sphere command 357

http://lammps.sandia.gov

LIGGGHTS Users Manual

This compute subtracts out translational degrees-of-freedom due to fixes that constrain molecular motion,
such as fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints
will be computed correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option
of the compute modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The keyword/value option pairs are used in the following ways.

For the bias keyword, bias-ID refers to the ID of a temperature compute that removes a "bias" velocity from
each atom. This allows compute temp/sphere to compute its thermal temperature after the translational kinetic
energy components have been altered in a prescribed way, e.g. to remove a velocity profile. Thermostats that
use this compute will work with this bias term. See the doc pages for individual computes that calculate a
temperature and the doc pages for fixes that perform thermostatting for more details.

For the dof keyword, a setting of all calculates a temperature that includes both translational and rotational
degrees of freedom. A setting of rotate calculates a temperature that includes only rotational degrees of
freedom.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) and a radius as defined by the
atom_style sphere command.

All particles in the group must be finite-size spheres, or point particles with radius = 0.0.

Related commands:

compute temp, compute temp/asphere

Default:

The option defaults are no bias and dof = all.

compute temp/sphere command 358

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ti command

Syntax:
compute ID group ti keyword args

¢ ID, group-ID are documented in compute command

e ti = style name of this compute command

® one or more attribute/arg pairs may be appended

¢ keyword = pair style (lj/cut, gauss, born, etc) or tail or kspace

pair style args = v_namel v_name2
v_namel = variable with namel that is energy scale factor and function of lambda

v_name2 = variable with name2 that is derivative of v_namel with respect to lambda
tail args = v_namel v_name2

v_namel = variable with namel that is energy tail correction scale factor and function

v_name2 = variable with name2 that is derivative of v_namel with respect to lambda
kspace args = v_namel v_name2

v_namel = variable with namel that is K-Space scale factor and function of lambda

v_name2 = variable with name2 that is derivative of v_namel with respect to lambda

Examples:
compute 1 all ti 1j/cut v_13j v_dlj coul/long v_c v_dc kspace v_ks v_dks
Description:

Define a computation that calculates the derivative of the interaction potential with respect to lambda, the
coupling parameter used in a thermodynamic integration. This derivative can be used to infer a free energy
difference resulting from an alchemical simulation, as described in Eike.

Typically this compute will be used in conjunction with the fix adapt command which can perform alchemical
transformations by adusting the strength of an interaction potential as a simulation runs, as defined by one or
more pair_style or kspace style commands. This scaling is done via a prefactor on the energy, forces, virial
calculated by the pair or K-Space style. The prefactor is often a function of a lambda parameter which may be
adjusted from O to 1 (or vice versa) over the course of a run. The time-dependent adjustment is what the fix
adapt command does.

Assume that the unscaled energy of a pair_style or kspace_style is given by U. Then the scaled energy is
Us = f(lambda) U

where f() is some function of lambda. What this compute calculates is

dUs / d(lambda) = U df (lambda)/dlambda = Us / f(lambda) df(lambda)/dlambda

which is the derivative of the system's scaled potential energy Us with respect to lambda.

To do this calculation, you provide two functions, as equal-style variables. The first is specified as v_namel,
where namel is the name of the variable, and is f(lambda) in the notation above. The second is specified as
v_name2, where name?2 is the name of the variable, and is df(lambda) / dlambda in the notation above. lLe. it is
the analytic derivative of f() with respect to lambda. Note that the namel variable is also typically given as an
argument to the fix adapt command.

compute ti command 359

http://lammps.sandia.gov

LIGGGHTS Users Manual

An alchemical simulation may use several pair potentials together, invoked via the pair_style hybrid or
hybrid/overlay command. The total dUs/dlambda for the overall system is calculated as the sum of each
contributing term as listed by the keywords in the compute ti command. Individual pair potentials can be
listed, which will be sub-styles in the hybrid case. You can also include a K-space term via the kspace
keyword. You can also include a pairwise long-range tail correction to the energy via the fail keyword.

For each term you can specify a different (or the same) scale factor by the two variables that you list. Again,
these will typically correspond toe the scale factors applied to these various potentials and the K-Space
contribution via the fix_adapt command.

More details about the exact functional forms for the computation of du/dl can be found in the paper by Eike.
Output info:

This compute calculates a global scalar, namely dUs/dlambda. This value can be used by any command that
uses a global scalar value from a compute as input. See Section _howto 15 for an overview of LAMMPS
output options.

The scalar value calculated by this compute is "extensive".

The scalar value will be in energy units.

Restrictions: none

Related commands:

fix_adapt

Default: none

(Eike) Eike and Maginn, Journal of Chemical Physics, 124, 164503 (2006).

compute ti command 360

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

create_atoms command
Syntax:
create_atoms type style args keyword values

¢ type = atom type (1-Ntypes) of atoms to create
¢ style = box or region or single or random

box args = none
region args = region-ID
region-ID = atoms will only be created if contained in the region
single args = X y z
X,y,2z = coordinates of a single atom (distance units)

random args = N seed region-ID
N = number of atoms to create
seed = random # seed (positive integer)
region-ID = create atoms within this region, use NULL for entire simulation box
¢ zero or more keyword/value pairs may be appended

¢ keyword = basis or remap or units

basis values = M itype
M = which basis atom
itype = atom type (1-N) to assign to this basis atom
remap value = yes Or no
units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

Examples:

create_atoms 1 box
create_atoms 3 region regsphere basis 2 3
create_atoms 3 single 0 0 5

Description:

This command creates atoms on a lattice, or a single atom, or a random collection of atoms, as an alternative
to reading in their coordinates explicitly via a read data or read restart command. A simulation box must
already exist, which is typically created via the create box command. Before using this command, a lattice
must also be defined using the lattice command. The only exceptions are for the single style with units = box
or the random style.

For the box style, the create_atoms command fills the entire simulation box with atoms on the lattice. If your
simulation box is periodic, you should insure its size is a multiple of the lattice spacings, to avoid unwanted
atom overlaps at the box boundaries. If your box is periodic and a multiple of the lattice spacing in a particular
dimension, LAMMPS is careful to put exactly one atom at the boundary (on either side of the box), not zero
or two.

For the region style, the geometric volume is filled that is inside the simulation box and is also consistent with
the region volume. See the region command for details. Note that a region can be specified so that its
"volume" is either inside or outside a geometric boundary. Also note that if your region is the same size as a
periodic simulation box (in some dimension), LAMMPS does not implement the same logic as with the box
style, to insure exactly one atom at the boundary. if this is what you desire, you should either use the box
style, or tweak the region size to get precisely the atoms you want.

create_atoms command 361

http://lammps.sandia.gov

LIGGGHTS Users Manual

For the single style, a single atom is added to the system at the specified coordinates. This can be useful for
debugging purposes or to create a tiny system with a handful of atoms at specified positions.

For the random style, N atoms are added to the system at randomly generated coordinates, which can be
useful for generating an amorphous system. The atoms are created one by one using the speficied random
number seed, resulting in the same set of atom coordinates, independent of how many processors are being
used in the simulation. If the region-ID argument is specified as NULL, then the created atoms will be
anywhere in the simulation box. If a region-ID is specified, a geometric volume is filled that is inside the
simulation box and is also consistent with the region volume. See the region command for details. Note that a
region can be specified so that its "volume" is either inside or outside a geometric boundary.

IMPORTANT NOTE: The atoms generated by the random style will typically be highly overlapped which
will cause many interatomic potentials to compute large energies and forces. Thus you should either perform
an energy minimization or run dynamics with fix nve/limit to equilibrate such a system, before running
normal dynamics.

The basis keyword specifies an atom type that will be assigned to specific basis atoms as they are created. See
the lattice command for specifics on how basis atoms are defined for the unit cell of the lattice. By default, all
created atoms are assigned the argument fype as their atom type.

The remap keyword only applies to the single style. If it is set to yes, then if the specified position is outside
the simulation box, it will mapped back into the box, assuming the relevant dimensions are periodic. If it is set
to no, no remapping is done and no atom is created if its position is outside the box.

The units keyword determines the meaning of the distance units used to specify the coordinates of the one
atom created by the single style. A box value selects standard distance units as defined by the units command,
e.g. Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings.

Note that this command adds atoms to those that already exist. By using the create_atoms command multiple
times, multiple sets of atoms can be added to the simulation. For example, interleaving create_atoms with
lattice commands specifying different orientations, grain boundaries can be created. By using the
create_atoms command in conjunction with the delete atoms command, reasonably complex geometries can
be created. The create_atoms command can also be used to add atoms to a system previously read in from a
data or restart file. In all these cases, care should be taken to insure that new atoms do not overlap existing
atoms inappropriately. The delete atoms command can be used to handle overlaps.

Atom IDs are assigned to created atoms in the following way. The collection of created atoms are assigned
consecutive IDs that start immediately following the largest atom ID existing before the create_atoms
command was invoked. When a simulation is performed on different numbers of processors, there is no
guarantee a particular created atom will be assigned the same ID.

Aside from their ID, atom type, and xyz position, other properties of created atoms are set to default values,
depending on which quantities are defined by the chosen atom style. See the atom style command for more
details. See the set and yelocity commands for info on how to change these values.

e charge = 0.0

¢ dipole moment magnitude = 0.0
¢ diameter = 1.0

® shape =0.00.0 0.0

e density = 1.0

® volume = 1.0

e velocity = 0.0 0.0 0.0

¢ angular velocity = 0.0 0.0 0.0

¢ angular momentum = 0.0 0.0 0.0

create_atoms command 362

LIGGGHTS Users Manual

e quaternion = (1,0,0,0)
® bonds, angles, dihedrals, impropers = none

Note that the sphere atom style sets the default particle diameter to 1.0 as well as the density. This means the
mass for the particle is not 1.0, but is PI/6 * diameter"3 = 0.5236.

Note that the ellipsoid atom style sets the default particle shape to (0.0 0.0 0.0) and the density to 1.0 which
means it is a point particle, not an ellipsoid, and has a mass of 1.0.

Note that the peri style sets the default volume and density to 1.0 and thus also set the mass for the particle to
1.0.

The set command can be used to override many of these default settings.
Restrictions:

An atom_style must be previously defined to use this command.
Related commands:

lattice, region, create box, read data, read restart

Default:

The default for the basis keyword is that all created atoms are assigned the argument fype as their atom type.
The default for remap = no and for units = lattice.

create_atoms command 363

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

create_box command

Syntax:
create_box N region-ID

¢ N =# of atom types to use in this simulation
¢ region-ID = ID of region to use as simulation domain

Examples:
create_box 2 mybox
Description:

This command creates a simulation box based on the specified region. Thus a region command must first be
used to define a geometric domain.

The argument N is the number of atom types that will be used in the simulation.

If the region is not of style prism, then LAMMPS encloses the region (block, sphere, etc) with an axis-aligned
orthogonal bounding box which becomes the simulation domain.

If the region is of style prism, LAMMPS creates a non-orthogonal simulation domain shaped as a
parallelepiped with triclinic symmetry. As defined by the region prism command, the parallelepiped has its
"origin" at (xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by A = (xhi-x10,0,0); B
= (xy,yhi-ylo,0); C = (xz,yz,zhi-zlo). Xy,xz,yz can be 0.0 or positive or negative values and are called "tilt
factors" because they are the amount of displacement applied to faces of an originally orthogonal box to
transform it into the parallelipiped.

A prism region used with the create_box command must have tilt factors (xy,xz,yz) that do not skew the box
more than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12, then the x box
length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz and yz must be between
-(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5 (as in this
example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all geometrically equivalent.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

When a prism region is used, the simulation domain must be periodic in any dimensions with a non-zero tilt
factor, as defined by the boundary command. L.e. if the xy tilt factor is non-zero, then both the x and y
dimensions must be periodic. Similarly, x and z must be periodic if xz is non-zero and y and z must be
periodic if yz is non-zero. Also note that if your simulation will tilt the box, e.g. via the fix deform command,
the simulation box must be defined as triclinic, even if the tilt factors are initially 0.0.

IMPORTANT NOTE: If the system is non-periodic (in a dimension), then you should not make the lo/hi box
dimensions (as defined in your region command) radically smaller/larger than the extent of the atoms you
eventually plan to create, e.g. via the create atoms command. For example, if your atoms extend from 0O to 50,
you should not specify the box bounds as -10000 and 10000. This is because LAMMPS uses the specified box
size to layout the 3d grid of processors. A huge (mostly empty) box will be sub-optimal for performance when
using "fixed" boundary conditions (see the boundary command). When using "shrink-wrap" boundary
conditions (see the boundary command), a huge (mostly empty) box may cause a parallel simulation to lose

create_box command 364

http://lammps.sandia.gov

LIGGGHTS Users Manual

atoms the first time that LAMMPS shrink-wraps the box around the atoms.
Restrictions:

An atom_style and region must have been previously defined to use this command.
Related commands:

create atoms, region

Default: none

create_box command 365

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

delete_atoms command

Syntax:
delete_atoms style args keyword value
¢ style = group or region or overlap or porosity

group args = group-—-ID
region args = region-ID
overlap args = cutoff groupl-ID group2-ID
cutoff = delete one atom from pairs of atoms within the cutoff (distance units)

groupl-ID = one atom in pair must be in this group

group2-ID = other atom in pair must be in this group
porosity args = region-ID fraction seed

region-ID = region within which to perform deletions

fraction = delete this fraction of atoms
seed = random number seed (positive integer)

¢ zero or more keyword/value pairs may be appended
¢ keyword = compress

compress value = no or yes
Examples:

delete_atoms group edge

delete_atoms region sphere compress no
delete_atoms overlap 0.3 all all
delete_atoms overlap 0.5 solvent colloid
delete_atoms porosity cube 0.1 482793

Description:

Delete the specified atoms. This command can be used to carve out voids from a block of material or to delete
created atoms that are too close to each other (e.g. at a grain boundary).

For style group, all atoms belonging to the group are deleted.
For style region, all atoms in the region volume are deleted.

For style overlap pairs of atoms whose distance of separation is within the specified cutoff distance are
searched for, and one of the 2 atoms is deleted. Only pairs where one of the two atoms is in the first group
specified and the other atom is in the second group are considered. The atom that is in the first group is the
one that is deleted.

Note that it is OK for the two group IDs to be the same (e.g. group all), or for some atoms to be members of
both groups. In these cases, either atom in the pair may be deleted. Also note that if there are atoms which are
members of both groups, the only guarantee is that at the end of the deletion operation, enough deletions will
have occurred that no atom pairs within the cutoff will remain (subject to the group restriction). There is no
guarantee that the minimum number of atoms will be deleted, or that the same atoms will be deleted when
running on different numbers of processors.

For style porosity a specified fraction of atoms are deleted within the specified region. For example, if

fraction is 0.1, then 10% of the atoms will be deleted. The atoms to delete are chosen randomly. There is no
guarantee that the exact fraction of atoms will be deleted, or that the same atoms will be deleted when running

delete_atoms command 366

http://lammps.sandia.gov

LIGGGHTS Users Manual

on different numbers of processors.

If the compress keyword is set to yes, then after atoms are deleted, then atom IDs are re-assigned so that they
run from 1 to the number of atoms in the system. This is not done for molecular systems (see the atom_style
command), regardless of the compress setting, since it would foul up the bond connectivity that has already
been assigned.

Restrictions:

The overlap styles requires inter-processor communication to acquire ghost atoms and build a neighbor list.
This means that your system must be ready to perform a simulation before using this command (force fields
setup, atom masses set, etc). Since a neighbor list is used to find overlapping atom pairs, it also means that
you must define a pair style with force cutoffs greater than or equal to the desired overlap cutoff between pairs
of relevant atom types, even though the pair potential will not be evaluated.

If the special bonds command is used with a setting of 0, then a pair of bonded atoms (1-2, 1-3, or 1-4) will
not appear in the neighbor list, and thus will not be considered for deletion by the overlap styles. You
probably don't want to be deleting one atom in a bonded pair anyway.

Related commands:

create atoms

Default:

The option defaults are compress = yes.

delete_atoms command 367

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

delete_bonds command
Syntax:
delete_bonds group—-ID style args keyword ...

¢ group-ID = group ID
¢ style = multi or atom or bond or angle or dihedral or improper or stats

multi args = none
atom args = an atom type
bond args = a bond type
angle args = an angle type
dihedral args = a dihedral type
improper args = an improper type
stats args = none

¢ zero or more keywords may be appended
¢ keyword = any or undo or remove or special

Examples:

delete_bonds frozen multi remove
delete_bonds all atom 4 special
delete_bonds all stats

Description:

Turn off (or on) molecular topology interactions, i.e. bonds, angles, dihedrals, impropers. This command is
useful for deleting interactions that have been previously turned off by bond-breaking potentials. It is also
useful for turning off topology interactions between frozen or rigid atoms. Pairwise interactions can be turned
off via the neigh modify exclude command. The fix shake command also effectively turns off certain bond
and angle interactions.

For all styles, an interaction is only turned off (or on) if all the atoms involved are in the specified group. For
style multi this is the only criterion applied - all types of bonds, angles, dihedrals, impropers in the group
turned off.

For style atom, one or more of the atoms involved must also be of the specified type.

For style bond, only bonds are candidates for turn-off, and the bond must also be of the specified type. Styles
angle, dihedral, and improper are treated similarly.

For style bond, you can set the type to O to delete bonds that have been previously broken by a bond-breaking
potential (which sets the bond type to 0 when a bond is broken); e.g. see the bond style quartic command.

For style stats no interactions are turned off (or on); the status of all interactions in the specified group is
simply reported. This is useful for diagnostic purposes if bonds have been turned off by a bond-breaking
potential during a previous run.

The default behavior of the delete_bonds command is to turn off interactions by toggling their type to a
negative value, but not to permanently remove the interaction. E.g. a bond_type of 2 is set to -2. The neighbor
list creation routines will not include such an interaction in their interaction lists. The default is also to not
alter the list of 1-2, 1-3, 1-4 neighbors computed by the special bonds command and used to weight pairwise
force and energy calculations. This means that pairwise computations will proceed as if the bond (or angle,

delete_bonds command 368

http://lammps.sandia.gov

LIGGGHTS Users Manual

etc) were still turned on.
Several keywords can be appended to the argument list to alter the default behavior.

The any keyword changes the requirement that all atoms in the bond (angle, etc) must be in the specified
group in order to turn-off the interaction. If any of the atoms in the interaction are in the specified group, it
will be turned off (or on if the undo keyword is used).

The undo keyword inverts the delete_bonds command so that the specified bonds, angles, etc are turned on if
they are currently turned off. This means a negative value is toggled to positive. Note that the fix shake
command also sets bond and angle types negative, so this option should not be used on those interactions.

The remove keyword is invoked at the end of the delete_bonds operation. It causes turned-off bonds (angles,
etc) to be removed from each atom's data structure and then adjusts the global bond (angle, etc) counts
accordingly. Removal is a permanent change; removed bonds cannot be turned back on via the undo keyword.
Removal does not alter the pairwise 1-2, 1-3, 1-4 weighting list.

The special keyword is invoked at the end of the delete_bonds operation, after (optional) removal. It
re-computes the pairwise 1-2, 1-3, 1-4 weighting list. The weighting list computation treats turned-off bonds

the same as turned-on. Thus, turned-off bonds must be removed if you wish to change the weighting list.

Note that the choice of remove and special options affects how 1-2, 1-3, 1-4 pairwise interactions will be
computed across bonds that have been modified by the delete_bonds command.

Restrictions:

This command requires inter-processor communication to coordinate the deleting of bonds. This means that
your system must be ready to perform a simulation before using this command (force fields setup, atom
masses set, etc).

If deleted bonds (angles, etc) are removed but the 1-2, 1-3, 1-4 weighting list is not recomputed, this can cause
a later fix shake command to fail due to an atom's bonds being inconsistent with the weighting list. This
should only happen if the group used in the fix command includes both atoms in the bond, in which case you
probably should be recomputing the weighting list.

Related commands:

neigh modify exclude, special bonds, fix shake

Default: none

delete_bonds command 369

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dielectric command
Syntax:
dielectric value
¢ value = dielectric constant
Examples:
dielectric 2.0
Description:
Set the dielectric constant for Coulombic interactions (pairwise and long-range) to this value. The constant is
unitless, since it is used to reduce the strength of the interactions. The value is used in the denominator of the
formulas for Coulombic interactions - e.g. a value of 4.0 reduces the Coulombic interactions to 25% of their
default strength. See the pair_style command for more details.
Restrictions: none
Related commands:
pair_style

Default:

dielectric 1.0

dielectric command 370

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style charmm command

dihedral_style charmm/omp command

Syntax:
dihedral_style charmm
Examples:

dihedral_style charmm
dihedral_coeff 1 120.0 1 60 0.5

Description:

The charmm dihedral style uses the potential
E = K[1 4 cos(n¢ — d)]

See (MacKerell) for a description of the CHARMM force field. This dihedral style can also be used for the
AMBER force field (see comment on weighting factors below). See (Cornell) for a description of the
AMBER force field.

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)

® n (integer >= 0)

¢ d (integer value of degrees)
e weighting factor (0.0 to 1.0)

The weighting factor is applied to pairwise interaction between the 1st and 4th atoms in the dihedral, which
are computed by a CHARMM pair_style with epsilon and sigma values specified with a pair_coeff command.
Note that this weighting factor is unrelated to the weighting factor specified by the special bonds command
which applies to all 1-4 interactions in the system.

For CHARMM force fields, the special_bonds 1-4 weighting factor should be set to 0.0. This is because the
pair styles that contain "charmm" (e.g. pair_style lj/charmm/coul/long) define extra 1-4 interaction
coefficients that are used by this dihedral style to compute those interactions explicitly. This means that if any
of the weighting factors defined as dihedral coefficients (4th coeff above) are non-zero, then you must use a
charmm pair style. Note that if you do not set the special_bonds 1-4 weighting factor to 0.0 (which is the
default) then 1-4 interactions in dihedrals will be computed twice, once by the pair routine and once by the
dihedral routine, which is probably not what you want.

For AMBER force fields, the special_bonds 1-4 weighting factor should be set to the AMBER defaults (1/2
and 5/6) and all the dihedral weighting factors (4th coeff above) should be set to 0.0. In this case, you can use
any pair style you wish, since the dihedral does not need any 1-4 information.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in

dihedral_style charmm command 371

http://lammps.sandia.gov

LIGGGHTS Users Manual

Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem B, 102, 3586 (1998).

dihedral_style charmm/omp command 372

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style class2 command

dihedral_style class2/omp command

Syntax:

dihedral_style class2

Examples:

dihedral_style class2

dihedral_ coeff
dihedral_ coeff
dihedral_ coeff
dihedral_ coeff
dihedral_ coeff
dihedral_coeff

* % DN X X

Description:

The class2 dihedral
T e

By =

Epp =

E ebt —

Eat —

Eaat —
LBz =

100 75 100 70 80 60

mbt 3.5945 0.1704 -0.5490 1.5228

ebt 0.3417 0.3264 -0.9036 0.1368 0.0 -0.8080 1.0119 1.1010
at 0.0 -0.1850 -0.7963 -2.0220 0.0 -0.3991 110.2453 105.1270
aat -13.5271 110.2453 105.1270

bbl3 0.0 1.0119 1.1010

style uses the potential

Ed + B+ Beopt <+ Lot + Bigat + Lo
Z K[l — cos(ng — ¢,)]

(r ik — T2) [A1 cos(@) + As cos(2¢0) + Aj cos(30)]
(rij — r1)[B1cos(¢) + Bz cos(2¢) + Bz cos(3¢))]
(rpg — 13)[C1 cos(¢) + Cs cos(2¢) + Cz cos(3¢))]
(6
G

)
)| B &)
)
iik — 01)| Dy cos(@) + Ds cos(2¢) + D3 cos(3¢0)] +
02)

I

ikl — 02)[F1 cos(@) + Eacos(20) + E3 cos(3¢)]
ﬂf(gzjh — 91)(9.}'.&‘! — 92) (_'.(_}E:({_fa".))
i%r(?“ij = T“l)('f“_:-fg m ?“;j)

where Ed is the dihedral term, Embt is a middle-bond-torsion term, Eebt is an end-bond-torsion term, Eat is an
angle-torsion term, Eaat is an angle-angle-torsion term, and Ebb13 is a bond-bond-13 term.

Thetal and theta2 are equilibrium angles and r1 r2 r3 are equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

Coefficients for the Ed, Embt, Eebt, Eat, Eaat, and Ebb13 formulas must be defined for each dihedral type via
the dihedral coeff command as in the example above, or in the data file or restart files read by the read data
or read restart commands.

dihedral_style class2 command

373

http://lammps.sandia.gov

LIGGGHTS Users Manual

These are the 6 coefficients for the Ed formula:

¢ K1 (energy)
® phil (degrees)
e K2 (energy)
® phi2 (degrees)
® K3 (energy)
® phi3 (degrees)

For the Embt formula, each line in a dihedral coeff command in the input script lists 5 coefficients, the first of
which is "mbt" to indicate they are MiddleBondTorsion coefficients. In a data file, these coefficients should
be listed under a "MiddleBondTorsion Coeffs" heading and you must leave out the "mbt", i.e. only list 4
coefficients after the dihedral type.

* mbt

® Al (energy/distance)
e A2 (energy/distance)
® A3 (energy/distance)
e 12 (distance)

For the Eebt formula, each line in a dihedral coeff command in the input script lists 9 coefficients, the first of
which is "ebt" to indicate they are EndBondTorsion coefficients. In a data file, these coefficients should be
listed under a "EndBondTorsion Coeffs" heading and you must leave out the "ebt", i.e. only list 8 coefficients
after the dihedral type.

® ebt

® B1 (energy/distance)
® B2 (energy/distance)
® B3 (energy/distance)
¢ C1 (energy/distance)
® C2 (energy/distance)
® C3 (energy/distance)
e r] (distance)

e 13 (distance)

For the Eat formula, each line in a dihedral coeff command in the input script lists 9 coefficients, the first of
which is "at" to indicate they are AngleTorsion coefficients. In a data file, these coefficients should be listed
under a "AngleTorsion Coeffs" heading and you must leave out the "at", i.e. only list 8 coefficients after the
dihedral type.

® at

® D1 (energy/radian)
® D2 (energy/radian)
® D3 (energy/radian)
¢ E1 (energy/radian)
e E2 (energy/radian)
¢ E3 (energy/radian)
o thetal (degrees)

o theta2 (degrees)

Thetal and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units
of D and E are in energy/radian.

For the Eaat formula, each line in a dihedral coeff command in the input script lists 4 coefficients, the first of

dihedral_style class2/omp command 374

LIGGGHTS Users Manual

which is "aat" to indicate they are AngleAngleTorsion coefficients. In a data file, these coefficients should be
listed under a "AngleAngleTorsion Coeffs" heading and you must leave out the "aat", i.e. only list 3
coefficients after the dihedral type.

® aat

® M (energy/radian”2)
o thetal (degrees)

o theta2 (degrees)

Thetal and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units
of M are in energy/radian”2.

For the Ebb13 formula, each line in a dihedral coeff command in the input script lists 4 coefficients, the first
of which is "bb13" to indicate they are BondBond13 coefficients. In a data file, these coefficients should be
listed under a "BondBond13 Coeffs" heading and you must leave out the "bb13", i.e. only list 3 coefficients
after the dihedral type.

e bbl3

® N (energy/distance”2)
e r] (distance)

e 13 (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the CLASS2 package. See the Making
LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

dihedral_style class2/omp command 375

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_coeff command

Syntax:
dihedral_coeff N args

¢ N = dihedral type (see asterisk form below)
¢ args = coefficients for one or more dihedral types

Examples:

dihedral _coeff 1 80.0 1
dihedral _coeff * 80.0 1 0.5
dihedral_coeff 2* 80.0 1 3 0.5

3
3

Description:

Specify the dihedral force field coefficients for one or more dihedral types. The number and meaning of the
coefficients depends on the dihedral style. Dihedral coefficients can also be set in the data file read by the
read data command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple dihedral types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of dihedral types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a dihedral_coeff command can override a previous setting for the same dihedral type. For
example, these commands set the coeffs for all dihedral types, then overwrite the coeffs for just dihedral type
2:

dihedral_coeff * 80.0 1 3
dihedral_coeff 2 200.0 1 3

A line in a data file that specifies dihedral coefficients uses the exact same format as the arguments of the
dihedral_coeff command in an input script, except that wild-card asterisks should not be used since
coefficients for all N types must be listed in the file. For example, under the "Dihedral Coeffs" section of a
data file, the line that corresponds to the 1st example above would be listed as

180.01 3

The dihedral style class? is an exception to this rule, in that an additional argument is used in the input script
to allow specification of the cross-term coefficients. See its doc page for details.

Here is an alphabetic list of dihedral styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated dihedral coeff command.

Note that there are also additional dihedral styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the dihedral section of this page.

e dihedral style none - turn off dihedral interactions
e dihedral style hybrid - define multiple styles of dihedral interactions

dihedral_coeff command 376

http://lammps.sandia.gov

LIGGGHTS Users Manual

e dihedral style charmm - CHARMM dihedral

e dihedral style class2 - COMPASS (class 2) dihedral

e dihedral style harmonic - harmonic dihedral

e dihedral style helix - helix dihedral

e dihedral style multi/harmonic - multi-harmonic dihedral
e dihedral style opls - OPLS dihedral

Restrictions:

This command must come after the simulation box is defined by a read data, read restart, or create box
command.

A dihedral style must be defined before any dihedral coefficients are set, either in the input script or in a data
file.

Related commands:

dihedral style

Default: none

dihedral_coeff command 377

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style cosine/shift/exp command

dihedral_style cosine/shift/exp/omp command
Syntax:

dihedral_style cosine/shift/exp

Examples:

dihedral_style cosine/shift/exp
dihedral _coeff 1 10.0 45.0 2.0

Description:
The cosine/shift/exp dihedral style uses the potential

e —all(0,0p) _ 1

E=-U_. 7 with U(6,60y) = —0.5(1 + cos(0 — b))
E.:If{, —_

where Umin, theta, and a are defined for each dihedral type.

The potential is bounded between [-Umin:0] and the minimum is located at the angle theta0. The a parameter
can be both positive or negative and is used to control the spring constant at the equilibrium.

The spring constant is given by k=a exp(a) Umin/ [2 (Exp(a)-1)]. For a>3 k/Umin = a/2 to better than 5%
relative error. For negative values of the a parameter, the spring constant is essentially zero, and anharmonic
terms takes over. The potential is furthermore well behaved in the limit a->0, where it has been implemented
to linear order in a for a < 0.001.

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

® umin (energy)
¢ theta (angle)
¢ A (real number)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use

the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

dihedral_style cosine/shift/exp command 378

http://lammps.sandia.gov

LIGGGHTS Users Manual

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

dihedral coeff, angle cosineshiftexp

Default: none

dihedral_style cosine/shift/exp/omp command 379

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style harmonic command

dihedral_style harmonic/omp command
Syntax:

dihedral_style harmonic

Examples:

dihedral_style harmonic
dihedral _coeff 1 80.0 1 2

Description:

The harmonic dihedral style uses the potential
E = K[1 + dcos(ng)]

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy)
ed(+1lor-1)
* n (integer >= ()

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

dihedral coeff

dihedral_style harmonic command 380

http://lammps.sandia.gov

LIGGGHTS Users Manual

Default: none

dihedral_style harmonic/omp command 381

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style helix command

dihedral_style helix’omp command
Syntax:

dihedral_style helix

Examples:

dihedral_style helix
dihedral _coeff 1 80.0 100.0 40.0

Description:

The helix dihedral style uses the potential
E = A[l — cos(0)] + B[1 + cos(36)] + C[1 + cos(0 + %)]

This coarse-grain dihedral potential is described in (Guo). For dihedral angles in the helical region, the energy
function is represented by a standard potential consisting of three minima, one corresponding to the trans (t)
state and the other to gauche states (g+ and g-). The paper describes how the A,B,C parameters are chosen so
as to balance secondary (largely driven by local interactions) and tertiary structure (driven by long-range
interactions).

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

® A (energy)
¢ B (energy)
¢ C (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

dihedral_style helix command 382

http://lammps.sandia.gov

LIGGGHTS Users Manual

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Guo) Guo and Thirumalai, Journal of Molecular Biology, 263, 323-43 (1996).

dihedral_style helix/omp command 383

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style hybrid command
Syntax:
dihedral_style hybrid stylel style2 ...
¢ stylel,style2 = list of one or more dihedral styles

Examples:

dihedral_style hybrid harmonic helix
dihedral_ coeff 1 harmonic 6.0 1 3
dihedral_ coeff 2* helix 10 10 10

Description:

The hybrid style enables the use of multiple dihedral styles in one simulation. An dihedral style is assigned to
each dihedral type. For example, dihedrals in a polymer flow (of dihedral type 1) could be computed with a
harmonic potential and dihedrals in the wall boundary (of dihedral type 2) could be computed with a helix
potential. The assignment of dihedral type to style is made via the dihedral coeff command or in the data file.

In the dihedral_coeff commands, the name of a dihedral style must be added after the dihedral type, with the
remaining coefficients being those appropriate to that style. In the example above, the 2 dihedral_coeff
commands set dihedrals of dihedral type 1 to be computed with a harmonic potential with coefficients 6.0, 1,
3 for K, d, n. All other dihedral types (2-N) are computed with a helix potential with coefficients 10, 10, 10 for
A, B, C.

If dihedral coefficients are specified in the data file read via the read data command, then the same rule
applies. E.g. "harmonic" or "helix", must be added after the dihedral type, for each line in the "Dihedral
Coeffs" section, e.g.

Dihedral Coeffs
1 harmonic 6.0 1 3

2 helix 10 10 10

If class2 is one of the dihedral hybrid styles, the same rule holds for specifying additional AngleTorsion (and
EndBondTorsion, etc) coefficients either via the input script or in the data file. L.e. class2 must be added to
each line after the dihedral type. For lines in the AngleTorsion (or EndBondTorsion, etc) section of the data
file for dihedral types that are not class2, you must use an dihedral style of skip as a placeholder, e.g.

AngleTorsion Coeffs
1 skip

2 class2 1.0 1.0 1.0 3.0 3.0 3.0 30.0 50.0

Note that it is not necessary to use the dihedral style skip in the input script, since AngleTorsion (or
EndBondTorsion, etc) coefficients need not be specified at all for dihedral types that are not class2.

A dihedral style of none with no additional coefficients can be used in place of a dihedral style, either in a

input script dihedral_coeff command or in the data file, if you desire to turn off interactions for specific
dihedral types.

dihedral_style hybrid command 384

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making L AMMPS section for more info on packages.

Unlike other dihedral styles, the hybrid dihedral style does not store dihedral coefficient info for individual
sub-styles in a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify
dihedral_coeff commands.

Related commands:

dihedral coeff

Default: none

dihedral_style hybrid command 385

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style multi’/harmonic command

dihedral_style multi’/harmonic/omp command

Syntax:
dihedral_style multi/harmonic
Examples:

dihedral_style multi/harmonic
dihedral_coeff 1 20 20 20 20 20

Description:

The multi/harmonic dihedral style uses the potential

Br= Z A, cos”‘_l('(j))

n=1.5

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

* Al (energy)
® A2 (energy)
® A3 (energy)
* A4 (energy)
® A5 (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section _accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

dihedral_style multi’/harmonic command 386

http://lammps.sandia.gov

LIGGGHTS Users Manual

Related commands:
dihedral coeff

Default: none

dihedral_style multi’lharmonic/omp command 387

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style none command
Syntax:
dihedral_style none

Examples:

dihedral_style none
Description:

Using an dihedral style of none means dihedral forces are not computed, even if quadruplets of dihedral atoms
were listed in the data file read by the read data command.

Restrictions: none
Related commands: none

Default: none

dihedral_style none command 388

http://lammps.sandia.gov

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style opls command

dihedral_style opls/omp command
Syntax:

dihedral_style opls

Examples:

dihedral_style opls
dihedral _coeff 1 90.0 90.0 90.0 70.0

Description:

The opls dihedral style uses the potential
| _ . _ _ - .
B= K, [1+cos(¢)]+ 5K [1—cos(2¢)]+ 5K [14-cos(3¢)]+ 5Ky [1—cos(4¢)

Note that the usual 1/2 factor is not included in the K values.
This dihedral potential is used in the OPLS force field and is described in (Watkins).

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

¢ K1 (energy)
¢ K2 (energy)
¢ K3 (energy)
® K4 (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

dihedral_style opls command 389

http://lammps.sandia.gov

LIGGGHTS Users Manual

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Watkins) Watkins and Jorgensen, J Phys Chem A, 105, 4118-4125 (2001).

dihedral_style opls/omp command 390

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style command
Syntax:
dihedral_style style

¢ style = none or hybrid or charmm or class2 or harmonic or helix or multi/harmonic or opls

Examples:

dihedral_style harmonic
dihedral_style multi/harmonic
dihedral_style hybrid harmonic charmm

Description:

Set the formula(s) LAMMPS uses to compute dihedral interactions between quadruplets of atoms, which
remain in force for the duration of the simulation. The list of dihedral quadruplets is read in by a read data or
read restart command from a data or restart file.

Hybrid models where dihedrals are computed using different dihedral potentials can be setup using the hybrid
dihedral style.

The coefficients associated with a dihedral style can be specified in a data or restart file or via the
dihedral coeff command.

All dihedral potentials store their coefficient data in binary restart files which means dihedral_style and
dihedral coeff commands do not need to be re-specified in an input script that restarts a simulation. See the
read restart command for details on how to do this. The one exception is that dihedral_style hybrid only
stores the list of sub-styles in the restart file; dihedral coefficients need to be re-specified.

IMPORTANT NOTE: When both a dihedral and pair style is defined, the special bonds command often
needs to be used to turn off (or weight) the pairwise interaction that would otherwise exist between 4 bonded
atoms.

In the formulas listed for each dihedral style, phi is the torsional angle defined by the quadruplet of atoms.

Here are some important points to take note of when defining the LAMMPS dihedral coefficients in the
formulas that follow so that they are compatible with other force fields:

¢ The LAMMPS convention is that the trans position = 180 degrees, while in some force fields trans =
0 degrees.

¢ Some force fields reverse the sign convention on d.

¢ Some force fields divide/multiply K by the number of multiple torsions that contain the j-k bond in an
i-j-k-1 torsion.

¢ Some force fields let n be positive or negative which corresponds to d = 1 or -1 for the harmonic style.

Here is an alphabetic list of dihedral styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated dihedral coeff command.

Note that there are also additional dihedral styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the dihedral section of this page.

dihedral_style command 391

http://lammps.sandia.gov

LIGGGHTS Users Manual

e dihedral style none - turn off dihedral interactions
e dihedral style hybrid - define multiple styles of dihedral interactions

e dihedral style charmm - CHARMM dihedral

e dihedral style class2 - COMPASS (class 2) dihedral

e dihedral style harmonic - harmonic dihedral

e dihedral style helix - helix dihedral

e dihedral style multi/harmonic - multi-harmonic dihedral
e dihedral style opls - OPLS dihedral

Restrictions:

Dihedral styles can only be set for atom styles that allow dihedrals to be defined.

Most dihedral styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
dihedral potentials tell if it is part of a package.

Related commands:

dihedral coeff

Default:

dihedral_style none

dihedral_style command 392

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style table command

dihedral_style table’'omp command

Syntax:
dihedral_style table style Ntable

¢ style = linear or spline = method of interpolation
¢ Ntable = size of the internal lookup table

Examples:

dihedral_style table spline 400
dihedral_style table linear 1000
dihedral coeff 1 file.table DIH_TABLE1l
dihedral_ coeff 2 file.table DIH_TABLE2

Description:

The table dihedral style creates interpolation tables of length Ntable from dihedral potential and derivative
values listed in a file(s) as a function of the dihedral angle "phi". The files are read by the dihedral coeff
command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
derivative values at each of Ntable dihedral angles. During a simulation, these tables are used to interpolate
energy and force values on individual atoms as needed. The interpolation is done in one of 2 styles: linear or
spline.

For the linear style, the dihedral angle (phi) is used to find 2 surrounding table values from which an energy
or its derivative is computed by linear interpolation.

For the spline style, cubic spline coefficients are computed and stored at each of the Nrable evenly-spaced
values in the interpolated table. For a given dihedral angle (phi), the appropriate coefficients are chosen from
this list, and a cubic polynomial is used to compute the energy and the derivative at this angle.

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above.

¢ filename
® keyword

The filename specifies a file containing tabulated energy and derivative values. The keyword specifies a
section of the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments). It can begin with one or
more comment or blank lines.

Table of the potential and its negative derivative

DIH_TABLE1l (keyword is the first text on line)
N 30 DEGREES (N, NOF, DEGREES, RADIANS, CHECKU/F)
(blank line)

1 -168.0 -1.40351172223 -0.0423346818422

dihedral_style table command 393

http://lammps.sandia.gov

LIGGGHTS Users Manual

2 -156.0 -1.70447981034 -0.00811786522531
3 -144.0 -1.62956100432 0.0184129719987

30 180.0 -0.707106781187 -0.0719306095245
Example 2: table of the potential. Forces omitted

DIH_TABLE2
N 30 NOF CHECKU testU.dat CHECKF testF.dat

1 -168.0 -1.40351172223
2 -156.0 -1.70447981034
3 -144.0 -1.62956100432

30 180.0 -0.707106781187

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the

dihedral coeff command. The next line lists (in any order) one or more parameters for the table. Each
parameter is a keyword followed by one or more numeric values.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is the angle value, the 3rd value is the energy (in energy units), and the 4th is -dE/d(phi)
also in energy units). The 3rd term is the energy of the 4-atom configuration for the specified angle. The 4th
term (when present) is the negative derivative of the energy with respect to the angle (in degrees, or radians
depending on whether the user selected DEGREES or RADIANS). Thus the units of the last term are still
energy, not force. The dihedral angle values must increase from one line to the next.

Dihedral table splines are cyclic. There is no discontinuity at 180 degrees (or at any other angle). Although in
the examples above, the angles range from -180 to 180 degrees, in general, the first angle in the list can have
any value (positive, zero, or negative). However the range of angles represented in the table must be strictly
less than 360 degrees (2pi radians) to avoid angle overlap. (You may not supply entries in the table for both
180 and -180, for example.) If the user's table covers only a narrow range of dihedral angles, strange
numerical behavior can occur in the large remaining gap.

Parameters:

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the dihedral style table command. Let Ntable is the number of table entries
requested dihedral_style command, and let Nfile be the parameter following "N" in the tabulated file ("30" in
the sparse example above). What LAMMPS does is a preliminary interpolation by creating splines using the
Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and derivative
values at Ntable different points (which are evenly spaced over a 360 degree range, even if the angles in the
file are not). The resulting tables of length Ntable are then used as described above, when computing energy
and force for individual dihedral angles and their atoms. This means that if you want the interpolation tables
of length Ntable to match exactly what is in the tabulated file (with effectively nopreliminary interpolation),
you should set Ntable = Nfile. To insure the nodal points in the user's file are aligned with the interpolated
table entries, the angles in the table should be integer multiples of 360/Ntable degrees, or 2*Pl/Ntable radians
(depending on your choice of angle units).

The optional "NOF" keyword allows the user to omit the forces (negative energy derivatives) from the table
file (normally located in the 4th column). In their place, forces will be calculated automatically by
differentiating the potential energy function indicated by the 3rd column of the table (using either linear or
spline interpolation).

The optional "DEGREES" keyword allows the user to specify angles in degrees instead of radians (default).

dihedral_style table/omp command 394

LIGGGHTS Users Manual

The optional "RADIANS" keyword allows the user to specify angles in radians instead of degrees. (Note:
This changes the way the forces are scaled in the 4th column of the data file.)

The optional "CHECKU" keyword is followed by a filename. This allows the user to save all of the the Ntable
different entries in the interpolated energy table to a file to make sure that the interpolated function agrees
with the user's expectations. (Note: You can temporarily increase the Ntable parameter to a high value for this
purpose. "Ntable" is explained above.)

The optional "CHECKF" keyword is analogous to the "CHECKU" keyword. It is followed by a filename, and
it allows the user to check the interpolated force table. This option is available even if the user selected the
"NOF" option.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.
Restrictions:

This dihedral style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

dihedral_style table/omp command 395

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dimension command

Syntax:
dimension N

eN=2or3
Examples:
dimension 2
Description:
Set the dimensionality of the simulation. By default LAMMPS runs 3d simulations. To run a 2d simulation,
this command should be used prior to setting up a simulation box via the create box or read data commands.
Restart files also store this setting.
See the discussion in Section _howto for additional instructions on how to run 2d simulations.
IMPORTANT NOTE: Some models in LAMMPS treat particles as extended spheres or ellipsoids, as opposed
to point particles. In 2d, the particles will still be spheres or ellipsoids, not circular disks or ellipses, meaning
their moment of inertia will be the same as in 3d.
Restrictions:
This command must be used before the simulation box is defined by a read data or create_box command.
Related commands:

fix enforce2d

Default:

dimension 3

dimension command 396

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

displace_atoms command

Syntax:

displace_atoms group-ID style args keyword value

¢ group-ID = ID of group of atoms to displace
¢ style = move or ramp or random

move args = delx dely delz

delx,dely,delz = distance to displace in each dimension (distance units)
ramp args = ddim dlo dhi dim clo chi

ddim = x or y or z

dlo,dhi = displacement distance between dlo and dhi (distance units)

dim = x or y or z

clo,chi = lower and upper bound of domain to displace (distance units)
random args = dx dy dz seed

dx,dy,dz = random displacement magnitude in each dimension (distance units)

seed = random # seed (positive integer)

¢ zero or more keyword/value pairs may be appended

keyword = units
value = box or lattice

Examples:

displace_atoms top move 0 -5 0 units box
displace_atoms flow ramp x 0.0 5.0 y 2.0 20.5

Description:

Displace a group of atoms. This can be used to move atoms a large distance before beginning a simulation or
to randomize atoms initially on a lattice. For example, in a shear simulation, an initial strain can be imposed
on the system. Or two groups of atoms can be brought into closer proximity.

The move style displaces the group of atoms by the specified 3d distance.

The ramp style displaces atoms a variable amount in one dimension depending on the atom's coordinate in a
(possibly) different dimension. For example, the second example command displaces atoms in the x-direction
an amount between 0.0 and 5.0 distance units. Each atom's displacement depends on the fractional distance its
y coordinate is between 2.0 and 20.5. Atoms with y-coordinates outside those bounds will be moved the
minimum (0.0) or maximum (5.0) amount.

The random style independently moves each atom in the group by a random displacement, uniformly sampled
from a value between -dx and +dx in the x dimension, and similarly for y and z. Random numbers are used in
such a way that the displacement of a particular atom is the same, regardless of how many processors are
being used.

Distance units for displacement are determined by the setting of box or lattice for the units keyword. Box
means distance units as defined by the units command - e.g. Angstroms for real units. Lattice means distance
units are in lattice spacings. The lattice command must have been previously used to define the lattice
spacing.

IMPORTANT NOTE: Care should be taken not to move atoms on top of other atoms. After the move, atoms
are remapped into the periodic simulation box if needed, and any shrink-wrap boundary conditions (see the

displace_atoms command 397

http://lammps.sandia.gov

LIGGGHTS Users Manual

boundary command) are enforced which may change the box size. Other than this effect, this command does
not change the size or shape of the simulation box. See the change box command if that effect is desired.

IMPORTANT NOTE: Atoms can be moved arbitrarily long distances by this command. If the simulation box
is non-periodic and shrink-wrapped (see the boundary command), this can change its size or shape. This is not
a problem, except that the mapping of processors to the simulation box is not changed by this command from

its initial 3d configuration; see the processors command. Thus, if the box size/shape changes dramatically, the
mapping of processors to the simulation box may not end up as optimal as the initial mapping attempted to be.

Restrictions: none

Related commands:

lattice, change box

Default:

The option defaults are units = lattice.

displace_atoms command 398

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump command

dump image command

Syntax:
dump ID group-ID style N file args

¢ D = user-assigned name for the dump
e group-ID = ID of the group of atoms to be dumped

¢ style = atom or atom/vtk or cfg or dcd or xtc or xyz or image or local or custom or mesh/stl or mesh/vtk

or mesh/vtk or decomposition/vtk or euler/vtk
¢ N = dump every this many timesteps
¢ file = name of file to write dump info to
e args = list of arguments for a particular style

atom args = none
atom/vtk args = none
cfg args = same as custom args, see below
dcd args = none
xtc args = none
Xyz args = none

image args = discussed on dump image doc page

mesh/stl args = 'local' or 'ghost' or 'all' or 'region' or any ID of a fix mesh/surface
region values = ID for region threshold
mesh/vtk args = zero or more keyword/ value pairs and one or more dump-identifiers
keywords = output
output values = face or interpolate
dump-identifier = 'stress' or 'id' or 'wear' or 'vel' or 'stresscomponents' or 'owne
euler/vtk args = none
decomposition/vtk args = none
local args = list of local attributes

possible attributes = index, c_ID, c_ID[N], f_ID, f_ID[N]
index = enumeration of local values
c_ID = local vector calculated by a compute with ID

c_ID[N] = Nth column of local array calculated by a compute with ID
f_ID = local vector calculated by a fix with ID
f_ID[N] = Nth column of local array calculated by a fix with ID
custom args = list of atom attributes
possible attributes = id, mol, type, element, mass,

X, yV, 2z, XS, ys, zs, xXu, yu, zu,
xsu, ysu, zsu, ix, iy, iz,

vx, vy, vz, fx, fy, fz,

g, mux, muy, muz, mu,

radius, diameter, omegax, omegay, omegaz,
angmomx, angmomy, angmomz, tgx, tqy, tqgz,
spin, eradius, ervel, erforce,

c_ID, c_ID[N], f_ID, f_IDI[N], Vv_name

id = atom ID

mol = molecule ID

type = atom type

element = name of atom element, as defined by dump modify command
mass = atom mass

X,y,z = unscaled atom coordinates

dump command

399

http://lammps.sandia.gov

LIGGGHTS Users Manual

XS,ys,zs = scaled atom coordinates

XU, yu, zu = unwrapped atom coordinates

XsU,ysu,zsu = scaled unwrapped atom coordinates

ix,iy,iz = box image that the atom is in

vx,Vy,vz = atom velocities

fx,fy,fz = forces on atoms

g = atom charge

mux,muy,muz = orientation of dipole moment of atom

mu = magnitude of dipole moment of atom

radius,diameter = radius,diameter of spherical particle
omegax, omegay,omegaz = angular velocity of extended particle
angmomx, angmomy, angmomz = angular momentum of extended particle
tax,tqy,tgz = torque on extended particles

spin = electron spin

eradius = electron radius

ervel = electron radial velocity

erforce = electron radial force
c_ID = per-atom vector calculated by a compute with ID

c_ID[N] = Nth column of per-atom array calculated by a compute with ID
f_ID = per-atom vector calculated by a fix with ID
f_ID[N] = Nth column of per—-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name

Examples:

dump myDump all atom 100 dump.atom

dump 2 subgroup atom 50 dump.run.bin

dump 4a all custom 100 dump.myforce.* id type x y vx fx

dump 4b flow custom 100 dump.%.myforce id type c_myF[3] v_ke

dump 2 inner cfg 10 dump.snap.*.cfg id type xXs ys zs vX Vy Vz

dump snap all cfg 100 dump.config.*.cfg id type xs ys zs id type c_Stress2
dump 1 all xtc 1000 file.xtc

dump e_data all custom 100 dump.eff id type x y z spin eradius fx fy fz eforce

LIGGGHTS vs. LAMMPS Info:

Two new styles (mesh/stl and mesh/vtk) are available for dumping granular mesh geometry into STL files or

VTK files. The former is used for dumping only the geometry, while the latter command is used to dump the
mesh IDs, stress etc- calculated on a granular mesh using the fix mesh/surface/stress command. Furthermore,
style decomposition/vtk can be used to dump the current parallel domain decomposition to a VTK file. Style

euler/vtk can be used to dump cell-based averages to a VTK file.

Description:
Dump a snapshot of atom quantities to one or more files every N timesteps in one of several styles. The image
style is the exception; it creates a JPG or PPM image file of the atom configuration every N timesteps, as

discussed on the dump image doc page.

Only information for atoms in the specified group is dumped. The dump modify thresh and region commands
can also alter what atoms are included. Not all styles support all these options; see details below.

As described below, the filename determines the kind of output (text or binary or gzipped, one big file or one
per timestep, one big file or one per processor).

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom written to a dump file may be slightly outside the simulation box.

IMPORTANT NOTE: Unless the dump _modify sort option is invoked, the lines of atom information written

to dump files (typically one line per atom) will be in an indeterminate order for each snapshot. This is even
true when running on a single processor, if the atom modify sort option is on, which it is by default. In this

dump image command 400

LIGGGHTS Users Manual

case atoms are re-ordered periodically during a simulation, due to spatial sorting. It is also true when running
in parallel, because data for a single snapshot is collected from multiple processors.

For the atom, custom, cfg, and local styles, sorting is off by default. For the dcd, xtc, and xyz styles, sorting by
atom ID is on by default. See the dump modify doc page for details.

The style keyword determines what atom quantities are written to the file and in what format. Settings made
via the dump modify command can also alter the format of individual values and the file itself.

The atom, local, and custom styles create files in a simple text format that is self-explanatory when viewing a
dump file. Many of the LAMMPS post-processing tools, including Pizza.py, work with this format.

For post-processing purposes the atom and custom text files are self-describing in the following sense.

The dimensions of the simulation box are included in each snapshot. For an orthogonal simulation box this
information is is formatted as:

ITEM: BOX BOUNDS xx yy zz
xlo xhi
ylo yhi
zlo zhi

where xlo,xhi are the maximum extents of the simulation box in the x-dimension, and similarly for y and z.
The "xx yy zz" represent 6 characters that encode the style of boundary for each of the 6 simulation box
boundaries (xlo,xhi and ylo,yhi and zlo,zhi). Each of the 6 characters is either p = periodic, f = fixed, s =
shrink wrap, or m = shrink wrapped with a minimum value. See the boundary command for details.

For triclinic simulation boxes (non-orthogonal), an orthogonal bounding box which encloses the triclinic
simulation box is output, along with the 3 tilt factors (xy, xz, yz) of the triclinic box, formatted as follows:

ITEM: BOX BOUNDS xy Xz yzZ XX VY ZZ
xlo_bound xhi_bound xy
yvlo_bound yhi_bound xz
zlo_bound zhi_bound yz

The presence of the text "xy xz yz" in the ITEM line indicates that the 3 tilt factors will be included on each of
the 3 following lines. This bounding box is convenient for many visualization programs. The meaning of the 6
character flags for "xx yy zz" is the same as above.

Note that the first two numbers on each line are now xlo_bound instead of xlo, etc, since they repesent a
bounding box. See this section of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, simple formulas for how the 6 bounding box extents (xlo_bound,xhi_bound,etc) are calculated
from the triclinic parameters, and how to transform those parameters to and from other commonly used
triclinic representations.

The "ITEM: ATOMS" line in each snapshot lists column descriptors for the per-atom lines that follow. For
example, the descriptors would be "id type xs ys zs" for the default atom style, and would be the atom
attributes you specify in the dump command for the custom style.

For style atom, atom coordinates are written to the file, along with the atom ID and atom type. By default,
atom coords are written in a scaled format (from O to 1). I.e. an x value of 0.25 means the atom is at a location
1/4 of the distance from xlo to xhi of the box boundaries. The format can be changed to unscaled coords via
the dump modify settings. Image flags can also be added for each atom via dump_modify.

For style atom/vtk, atom coordinates, velocity, rotational velocity, force, atom ID, atom radius and atom type
are written to VTK files. Note that you have to link against VTK libraries to use this functionality.

dump image command 401

http://www.sandia.gov/~sjplimp/pizza.html

LIGGGHTS Users Manual

For style local, local output generated by computes and fixes is used to generate lines of output that is written
to the dump file. This local data is typically calculated by each processor based on the atoms it owns, but there
may be zero or more entities per atom, e.g. a list of bond distances. An explanation of the possible dump local
attributes is given below. Note that by using input from the compute property/local command with dump
local, it is possible to generate information on bonds, angles, etc that can be cut and pasted directly into a data
file read by the read data command.

Style cfg has the same command syntax as style custom and writes extended CFG format files, as used by the
AtomEye visualization package. Since the extended CFG format uses a single snapshot of the system per file,
a wildcard "*" must be included in the filename, as discussed below. The list of atom attributes for style cfg
must begin with either "id type xs ys zs" or "id type xsu ysu zsu" or since these quantities are needed to write
the CFG files in the appropriate format (though the "id" and "type" fields do not appear explicitly in the file).
Any remaining attributes will be stored as "auxiliary properties" in the CFG files. Note that you will typically
want to use the dump modify element command with CFG-formatted files, to associate element names with
atom types, so that AtomEye can render atoms appropriately. When unwrapped coordinates xsu, ysu, and zsu
are requested, the nominal AtomEye periodic cell dimensions are expanded by a large factor
UNWRAPEXPAND = 10.0, which ensures atoms that are displayed correctly for up to UNWRAPEXPAND/2
periodic boundary crossings in any direction. Beyond this, AtomEye will rewrap the unwrapped coordinates.
The expansion causes the atoms to be drawn farther away from the viewer, but it is easy to zoom the atoms
closer, and the interatomic distances are unaffected.

The dcd style writes DCD files, a standard atomic trajectory format used by the CHARMM, NAMD, and
XPlor molecular dynamics packages. DCD files are binary and thus may not be portable to different
machines. The number of atoms per snapshot cannot change with the dcd style. The unwrap option of the
dump modify command allows DCD coordinates to be written "unwrapped" by the image flags for each
atom. Unwrapped means that if the atom has passed through a periodic boundary one or more times, the value
is printed for what the coordinate would be if it had not been wrapped back into the periodic box. Note that
these coordinates may thus be far outside the box size stored with the snapshot.

The xtc style writes XTC files, a compressed trajectory format used by the GROMACS molecular dynamics
package, and described here. The precision used in XTC files can be adjusted via the dump _modify
command. The default value of 1000 means that coordinates are stored to 1/1000 nanometer accuracy. XTC
files are portable binary files written in the NFS XDR data format, so that any machine which supports XDR
should be able to read them. The number of atoms per snapshot cannot change with the xtc style. The unwrap
option of the dump modify command allows XTC coordinates to be written "unwrapped" by the image flags
for each atom. Unwrapped means that if the atom has passed thru a periodic boundary one or more times, the
value is printed for what the coordinate would be if it had not been wrapped back into the periodic box. Note
that these coordinates may thus be far outside the box size stored with the snapshot.

The xyz style writes XYZ files, which is a simple text-based coordinate format that many codes can read.

Note that DCD, XTC, and XYZ formatted files can be read directly by VMD (a popular molecular viewing
program). See Section tools of the manual and the tools/Imp2vmd/README.txt file for more information
about support in VMD for reading and visualizing LAMMPS dump files.

The mesh/stl style dumps active STL geometries defined via fix mesh commands into the specified file. If you
do not supply the optional list of mesh IDs, all meshes are dumped, irrespective of whether they are used in a
fix wall/gran command or not. By specifying a list of mesh IDs you can explicitly choose which meshes to
dump. The group-ID is ignored, because the command is not applied to particles, but to mesh geometries.
With keywords 'local’, 'owned' or 'ghost' you can decide which parts of the parallel meshes you want to dump
(default is 'local'). If the multiprocessor option is not used (no '%' in filename), data is gathered from all
processors, so using the default will output the whole mesh data across all processors.

Examples:

dump image command 402

http://mt.seas.upenn.edu/Archive/Graphics/A
http://manual.gromacs.org/current/online/xtc.html
http://www.ks.uiuc.edu/Research/vmd

LIGGGHTS Users Manual

dump stll all mesh/stl 300 post/dump*.stl

dump stl2 all mesh/stl 300 post/dump_proc%_local*.stl local
dump stl3 all mesh/stl 300 post/dump_proc%_ghost*.stl ghost
dump stl4 all mesh/stl 300 post/dump_proc_all_ghost*.stl ghost

The first command will write one file per time-step containing the complete mesh. The second command will
output one file per time-step per processor containing the local (owned) mesh elements of each processor. The
third command will output one file per time-step per processor containing the ghost (corona) mesh elements
of each processor. The third command will output one file per time-step containing the ghost (corona) mesh
elements of all processors.

With the region keyword, just those mesh element where the element center (arithmetic average of all nodes)
is in the specified region, will be dumped.

This dump is especially useful if a fix move/mesh is registered. If the position of the mesh is changed over
time and you want to dump one file for each dump timestep for post-processing together with the particle
data, you should use a filename like 'mydumpfile*.stl'. Note: This series of files can then be post-processed
together with the particle dump file converted to VTK in Paraview , www.paraview.org

By providing any ID (or a list of IDs) of fix mesh/surface commands, you can specify which meshes to dump.
If no meshes are specified, all meshes used in the simulation are dumped.

The mesh/vtk style can be used to dump active mesh geometries defined via fix mesh commands to a series of
VTK files. Different keywords can be used to dump the per-triangle stress, id, velocity, wear, stress
components, area or the process which owns the element (visulatisation of the parallel decomposition) into the
specified file using a VTK file format. The list of mesh IDs is optional. As with the stl style, all active meshes
are dumped if you do not supply the optional list of mesh IDs. By specifying list of mesh IDs you can
explicitly choose which meshes to dump. The group-ID is ignored. Again, a series of files can be
post-processed in Paraview , www.paraview.org Most keywords as used for the mesh/vtk style are
self-explanatory. Keyword output controlls if the data is written in a per-face manner or as interpolated values
to VTK. Keywords aedges and acorners dump the number of active edges/corners per face. Keyword nneighs
dumps the number of face neighbors LIGGGHTS has recognized for each face.

By providing any ID (or a list of IDs) of fix mesh/surface commands, you can specify which meshes to dump.
If no meshes are specified, all meshes used in the simulation are dumped.

The euler/vtk style dumps the output of a fix ave/euler command into a series of VTK files. No further args
are expected.

The decomposition/vtk style dumps the processor grid decomposition into a series of VTK files. No further
args are expected.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump modify first command, which can be useful if the dump command is invoked after a
minimization ended on an arbitrary timestep. N can be changed between runs by using the dump modify
every command (not allowed for ded style).

The specified filename determines how the dump file(s) is written. The default is to write one large text file,
which is opened when the dump command is invoked and closed when an undump command is used or when

LAMMPS exits. For the dcd and xtc styles, this is a single large binary file.

Dump filenames can contain two wildcard characters. If a "*" character appears in the filename, then one file
per snapshot is written and the "*" character is replaced with the timestep value. For example, tmp.dump.*

dump image command 403

LIGGGHTS Users Manual

becomes tmp.dump.0, tmp.dump.10000, tmp.dump.20000, etc. This option is not available for the dcd and xtc
styles. Note that the dump _modify pad command can be used to insure all timestep numbers are the same
length (e.g. 00010), which can make it easier to read a series of dump files in order by some post-processing
tools.

If a "%" character appears in the filename, then one file is written for each processor and the "%" character is
replaced with the processor ID from O to P-1. For example, tmp.dump.% becomes tmp.dump.0, tmp.dump.1,
... tmp.dump.P-1, etc. This creates smaller files and can be a fast mode of output on parallel machines that
support parallel I/O for output. This option is not available for the dcd, xtc, and xyz styles.

Note that the "*" and "%" characters can be used together to produce a large number of small dump files!

If the filename ends with ".bin", the dump file (or files, if "*" or "%" is also used) is written in binary format.
A binary dump file will be about the same size as a text version, but will typically write out much faster. Of
course, when post-processing, you will need to convert it back to text format (see the binary2txt tool) or write
your own code to read the binary file. The format of the binary file can be understood by looking at the
tools/binary2txt.cpp file. This option is only available for the atom and custom styles.

If the filename ends with ".gz", the dump file (or files, if "*" or "%" is also used) is written in gzipped format.
A gzipped dump file will be about 3x smaller than the text version, but will also take longer to write. This
option is not available for the dcd and xtc styles.

This section explains the local attributes that can be specified as part of the local style.

The index attribute can be used to generate an index number from 1 to N for each line written into the dump
file, where N is the total number of local datums from all processors, or lines of output that will appear in the
snapshot. Note that because data from different processors depend on what atoms they currently own, and
atoms migrate between processor, there is no guarantee that the same index will be used for the same info
(e.g. a particular bond) in successive snapshots.

The c_ID and c_ID[N] attributes allow local vectors or arrays calculated by a compute to be output. The ID in
the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details. There are computes for calculating local information such as
indices, types, and energies for bonds and angles.

Note that computes which calculate global or per-atom quantities, as opposed to local quantities, cannot be
output in a dump local command. Instead, global quantities can be output by the thermo _style custom
command, and per-atom quantities can be output by the dump custom command.

If c_ID is used as a attribute, then the local vector calculated by the compute is printed. If ¢_ID[N] is used,
then N must be in the range from 1-M, which will print the Nth column of the M-length local array calculated
by the compute.

The f_ID and f_ID[N] attributes allow local vectors or arrays calculated by a fix to be output. The ID in the
attribute should be replaced by the actual ID of the fix that has been defined previously in the input script.

If f_ID is used as a attribute, then the local vector calculated by the fix is printed. If f ID[N] is used, then N
must be in the range from 1-M, which will print the Nth column of the M-length local array calculated by the
fix.

Here is an example of how to dump bond info for a system, including the distance and energy of each bond:

compute 1 all property/local batoml batom2 btype
compute 2 all bond/local dist eng
dump 1 all local 1000 tmp.dump index c_11 c_12 c_13 c_21 c_22

dump image command 404

LIGGGHTS Users Manual

This section explains the atom attributes that can be specified as part of the custom and cfg styles.
The id, mol, type, element, mass, vx, vy, vz, fx, fy, fz, q attributes are self-explanatory.

Id is the atom ID. Mol is the molecule ID, included in the data file for molecular systems. Type is the atom
type. Element is typically the chemical name of an element, which you must assign to each type via the

dump modify element command. More generally, it can be any string you wish to associated with an atom
type. Mass is the atom mass. Vx, vy, vz, fx, fv, fz, and g are components of atom velocity and force and atomic
charge.

There are several options for outputting atom coordinates. The x, y, z attributes write atom coordinates
"unscaled", in the appropriate distance units (Angstroms, sigma, etc). Use xs, ys, zs if you want the
coordinates "scaled" to the box size, so that each value is 0.0 to 1.0. If the simulation box is triclinic (tilted),
then all atom coords will still be between 0.0 and 1.0. Use xu, yu, zu if you want the coordinates "unwrapped"
by the image flags for each atom. Unwrapped means that if the atom has passed thru a periodic boundary one
or more times, the value is printed for what the coordinate would be if it had not been wrapped back into the
periodic box. Note that using xu, yu, zu means that the coordinate values may be far outside the box bounds
printed with the snapshot. Using xsu, ysu, zsu is similar to using xu, yu, zu, except that the unwrapped
coordinates are scaled by the box size. Atoms that have passed through a periodic boundary will have the
corresponding cooordinate increased or decreased by 1.0.

The image flags can be printed directly using the ix, iy, iz attributes. The dump modify command describes in
more detail what is meant by scaled vs unscaled coordinates and the image flags.

The mux, muy, muz attributes are specific to dipolar systems defined with an atom style of dipole. They give
the orientation of the atom's point dipole moment. The mu attribute gives the magnitude of the atom's dipole
moment.

The radius and diameter attributes are specific to extended spherical particles that have a finite size, such as
those defined with an atom style of sphere.

The omegax, omegay, and omegaz attributes are specific to extended spherical or aspherical particles that have
an angular velocity. Only certain atom styles, such as sphere define this quantity.

The angmomx, angmomy, and angmomz attributes are specific to extended aspherical particles that have an
angular momentum. Only the ellipsoid atom style defines this quantity.

The tgx, tqy, tqz attributes are for extended spherical or aspherical particles that can sustain a rotational torque
due to interactions with other particles.

The spin, eradius, ervel, and erforce attributes are for particles that represent nuclei and electrons modeled
with the electronic force field (EFF). See atom_style electron and pair_style eff for more details.

The c_ID and c_ID[N] attributes allow per-atom vectors or arrays calculated by a compute to be output. The
ID in the attribute should be replaced by the actual ID of the compute that has been defined previously in the
input script. See the compute command for details. There are computes for calculating the per-atom energy,
stress, centro-symmetry parameter, and coordination number of individual atoms.

Note that computes which calculate global or local quantities, as opposed to per-atom quantities, cannot be
output in a dump custom command. Instead, global quantities can be output by the thermo_style custom

command, and local quantities can be output by the dump local command.

If c_ID is used as a attribute, then the per-atom vector calculated by the compute is printed. If c_ID[N] is

dump image command 405

LIGGGHTS Users Manual

used, then N must be in the range from 1-M, which will print the Nth column of the M-length per-atom array
calculated by the compute.

The f_ID and f_ID[N] attributes allow vector or array per-atom quantities calculated by a fix to be output. The
ID in the attribute should be replaced by the actual ID of the fix that has been defined previously in the input
script. The fix ave/atom command is one that calculates per-atom quantities. Since it can time-average
per-atom quantities produced by any compute, fix, or atom-style variable, this allows those time-averaged
results to be written to a dump file.

If £_ID is used as a attribute, then the per-atom vector calculated by the fix is printed. If f_ID[N] is used, then
N must be in the range from 1-M, which will print the Nth column of the M-length per-atom array calculated
by the fix.

The v_name attribute allows per-atom vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only
an atom-style variable can be referenced, since it is the only style that generates per-atom values. Variables of
style afom can reference individual atom attributes, per-atom atom attributes, thermodynamic keywords, or
invoke other computes, fixes, or variables when they are evaluated, so this is a very general means of creating
quantities to output to a dump file.

See Section _modify of the manual for information on how to add new compute and fix styles to LAMMPS to
calculate per-atom quantities which could then be output into dump files.

Restrictions:

To write gzipped dump files, you must compile LAMMPS with the -DLAMMPS_GZIP option - see the
Making LAMMPS section of the documentation.

To be able to use atom/vtk, you have to link to VTK libraries.

The xtc style is part of the XTC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info. This is because some machines may not support the low-level XDR
data format that XTC files are written with, which will result in a compile-time error when a low-level include
file is not found. Putting this style in a package makes it easy to exclude from a LAMMPS build for those
machines. However, the XTC package also includes two compatibility header files and associated functions,
which should be a suitable substitute on machines that do not have the appropriate native header files. This
option can be invoked at build time by adding -DLAMMPS_XDR to the CCFLAGS variable in the
appropriate low-level Makefile, e.g. src/MAKE/Makefile.foo. This compatibility mode has been tested
successfully on Cray XT3/XT4/XTS5 and IBM BlueGene/L. machines and should also work on IBM BG/P, and
Windows XP/Vista/7 machines.

Related commands:

dump image, dump modify, undump

Default:

The defaults for the image style are listed on the dump image doc page.

dump image command 406

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump image command
Syntax:
dump ID group-ID image N file color diameter keyword value

¢ ID = user-assigned name for the dump

e group-ID = ID of the group of atoms to be imaged

¢ image = style of dump command (other styles atom or cfg or dcd or xtc or xyz or local or custom are
discussed on the dump doc page)

¢ N = dump every this many timesteps

¢ file = name of file to write image to

e color = atom attribute that determines color of each atom

¢ diameter = atom attribute that determines size of each atom

¢ zero or more keyword/value pairs may be appended

¢ keyword = adiam or atom or bond or size or view or center or up Or ZOom Or persp or box or axes or
shiny or ssao

adiam value = number = numeric value for atom diameter (distance units)
atom = yes/no = do or do not draw atoms
bond values = color width = color and width of bonds
color = atom or type or none
width = number or atom or type or none
number = numeric value for bond width (distance units)
size values = width height = size of images
width = width of image in # of pixels
height = height of image in # of pixels
view values = theta phi = view of simulation box
theta = view angle from +z axis (degrees)
phi = azimuthal view angle (degrees)
theta or phi can be a variable (see below)
center values = flag Cx Cy Cz = center point of image
flag = "s" for static, "d" for dynamic
Cx,Cy,Cz = center point of image as fraction of box dimension (0.5 = center of box)
Cx,Cy,Cz can be variables (see below)
up values = Ux Uy Uz = direction that is "up" in image
Ux,Uy,Uz = components of up vector
Ux,Uy,Uz can be variables (see below)
zoom value = zfactor = size that simulation box appears in image
zfactor = scale image size by factor > 1 to enlarge, factor <1 to shrink
zfactor can be a variable (see below)
persp value = pfactor = amount of "perspective" in image
pfactor = amount of perspective (0 = none, <1 = some, > 1 = highly skewed)
pfactor can be a variable (see below)
box values = yes/no diam = draw outline of simulation box
yes/no = do or do not draw simulation box lines
diam = diameter of box lines as fraction of shortest box length
axes values = yes/no length diam = draw xyz axes
yes/no = do or do not draw xyz axes lines next to simulation box
length = length of axes lines as fraction of respective box lengths
diam = diameter of axes lines as fraction of shortest box length
shiny value = sfactor = shinyness of spheres and cylinders
sfactor = shinyness of spheres and cylinders from 0.0 to 1.0
ssao value = yes/no seed dfactor = SSAO depth shading
yes/no = turn depth shading on/off
seed = random # seed (positive integer)
dfactor = strength of shading from 0.0 to 1.0

Examples:

dump image command 407

http://lammps.sandia.gov

LIGGGHTS Users Manual
dump myDump all image 100 dump.*.jpg type type
Description:
Dump a high-quality ray-traced image of the atom configuration every N timesteps as either a JPG or PPM
file. A series of such images can easily be converted into an animated movie of your simulation; see further
details below. Other dump styles store snapshots of numerical data asociated with atoms in various formats, as

discussed on the dump doc page.

Here are two sample images, rendered as 1024x1024 JPG files. Click to see the full-size images:

Only atoms in the specified group are rendered in the image. The dump modify region and thresh commands
can also alter what atoms are included in the image.

The filename suffix determines whether a JPG or PPM file is created. If the suffix is ".jpg" or ".jpeg", then a
JPG file is created, else a PPM file is created, which is a text-based format. To write out JPG files, you must
build LAMMPS with a JPEG library. See this section of the manual for instructions on how to do this.

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom in the image may be slightly outside the simulation box.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump modify first command, which can be useful if the dump command is invoked after a
minimization ended on an arbitrary timestep. N can be changed between runs by using the dump modify
every command.

Dump image filenames must contain a wildcard character "*", so that one image file per snapshot is written.
The "*" character is replaced with the timestep value. For example, tmp.dump.*.jpg becomes tmp.dump.0.jpg,
tmp.dump.10000.jpg, tmp.dump.20000.jpg, etc. Note that the dump modify pad command can be used to
insure all timestep numbers are the same length (e.g. 00010), which can make it easier to convert a series of
images into a movie in the correct ordering.

The color and diameter settings determine the color and size of atoms rendered in the image. They can be any
atom attribute defined for the dump custom command, including #ype and element. This includes per-atom
quantities calculated by a compute, fix, or variable, which are prefixed by "c_", "f_", or "v_" respectively.
Note that the diameter setting can be overridden with a numeric value by the optional adiam keyword, in
which case you can specify the diameter setting with any valid atom attribute.

dump image command 408

LIGGGHTS Users Manual

If type is specified for the color setting, then the color of each atom is determined by its atom type. By default
the mapping of types to colors is as follows:

e type 1 =red

® type 2 = green
e type 3 = blue

® type 4 = yellow
® type 5 = aqua

® type 6 = cyan

and repeats itself for types > 6. This mapping can be changed by the dump modify acolor command.

If type is specified for the diameter setting then the diameter of each atom is determined by its atom type. By
default all types have diameter 1.0. This mapping can be changed by the dump modify adiam command.

If element is specified for the color and/or diameter setting, then the color and/or diameter of each atom is
determined by which element it is, which in turn is specified by the element-to-type mapping specified by the
"dump_modify element" command. By default every atom type is C (carbon). Every element has a color and
diameter associated with it, which is the same as the colors and sizes used by the AtomEye visualization
package.

If other atom attributes are used for the color or diameter settings, they are interpreted in the following way.

If "vx", for example, is used as the color setting, then the color of the atom will depend on the x-component of
its velocity. The association of a per-atom value with a specific color is determined by a "color map", which
can be specified via the dump modify command. The basic idea is that the atom-attribute will be within a
range of values, and every value within the range is mapped to a specific color. Depending on how the color
map is defined, that mapping can take place via interpolation so that a value of -3.2 is halfway between "red"
and "blue", or discretely so that the value of -3.2 is "orange".

If "vx", for example, is used as the diameter setting, then the atom will be rendered using the x-component of
its velocity as the diameter. If the per-atom value <= 0.0, them the atom will not be drawn. Note that
finite-size spherical particles, as defined by atom_style sphere define a per-particle radius or diameter, which
can be used as the diameter setting.

The various kewords listed above control how the image is rendered. As listed below, all of the keywords
have defaults, most of which you will likely not need to change. The dump modify also has options specific to
the dump image style, particularly for assigning colors to atoms, bonds, and other image features.

The adiam keyword allows you to override the diameter setting to a per-atom attribute with a specified
numeric value. All atoms will be drawn with that diameter, e.g. 1.5, which is in whatever distance units the
input script defines, e.g. Angstroms.

The atom keyword allow you to turn off the drawing of all atoms, if the specified value is no.

The bond keyword allows to you to alter how bonds are drawn. A bond is only drawn if both atoms in the
bond are being drawn due to being in the specified group and due to other selection criteria (e.g. region,
threshhold settings of the dump modify command). By default, bonds are drawn if they are defined in the
input data file as read by the read data command. Using none for both the bond color and width value will
turn off the drawing of all bonds.

If atom is specified for the bond color value, then each bond is drawn in 2 halves, with the color of each half
being the color of the atom at that end of the bond.

dump image command 409

http://mt.seas.upenn.edu/Archive/Graphics/A

LIGGGHTS Users Manual

If type is specified for the color value, then the color of each bond is determined by its bond type. By default
the mapping of bond types to colors is as follows:

e type 1 =red

® type 2 = green
e type 3 = blue

® type 4 = yellow
® type 5 = aqua

® type 6 = cyan

and repeats itself for bond types > 6. This mapping can be changed by the dump modify bcolor command.
The bond width value can be a numeric value or atom or type (or none as indicated above).

If a numeric value is specified, then all bonds will be drawn as cylinders with that diameter, e.g. 1.0, which is
in whatever distance units the input script defines, e.g. Angstroms.

If atom is specified for the width value, then each bond will be drawn with a width corresponding to the
minimum diameter of the 2 atoms in the bond.

If type is specified for the width value then the diameter of each bond is determined by its bond type. By
default all types have diameter 0.5. This mapping can be changed by the dump modify bdiam command.

The size keyword sets the width and height of the created images, i.e. the number of pixels in each direction.

The view, center, up, zoom, and persp values determine how 3d simulation space is mapped to the 2d plane of
the image. Basically they control how the simulation box appears in the image.

All of the view, center, up, zoom, and persp values can be specified as numeric quantities, whose meaning is
explained below. Any of them can also be specified as an equal-style variable, by using v_name as the value,
where "name" is the variable name. In this case the variable will be evaluated on the timestep each image is
created to create a new value. If the equal-style variable is time-dependent, this is a means of changing the
way the simulation box appears from image to image, effectively doing a pan or fly-by view of your
simulation.

The view keyword determines the viewpoint from which the simulation box is viewed, looking towards the
center point. The theta value is the vertical angle from the +z axis, and must be an angle from 0 to 180
degrees. The phi value is an azimuthal angle around the z axis and can be positive or negative. A value of 0.0
is a view along the +x axis, towards the center point. If theta or phi are specified via variables, then the
variable values should be in degrees.

The center keyword determines the point in simulation space that will be at the center of the image. Cx, Cy,
and Cz are speficied as fractions of the box dimensions, so that (0.5,0.5,0.5) is the center of the simulation
box. These values do not have to be between 0.0 and 1.0, if you want the simulation box to be offset from the
center of the image. Note, however, that if you choose strange values for Cx, Cy, or Cz you may get a blank
image. Internally, Cx, Cy, and Cz are converted into a point in simulation space. If flag is set to "s" for static,
then this conversion is done once, at the time the dump command is issued. If flag is set to "d" for dynamic
then the conversion is performed every time a new image is created. If the box size or shape is changing, this
will adjust the center point in simulation space.

The up keyword determines what direction in simulation space will be "up" in the image. Internally it is stored
as a vector that is in the plane perpendicular to the view vector implied by the theta and pni values, and which
is also in the plane defined by the view vector and user-specified up vector. Thus this internal vector is
computed from the user-specified up vector as

dump image command 410

LIGGGHTS Users Manual

up_internal = view cross (up cross view)

This means the only restriction on the specified up vector is that it cannot be parallel to the view vector,
implied by the theta and phi values.

The zoom keyword scales the size of the simulation box as it appears in the image. The default zfactor value
of 1 should display an image mostly filled by the atoms in the simulation box. A zfactor > 1 will make the
simulation box larger; a zfactor < 1 will make it smaller. Zfactor must be a value > 0.0.

The persp keyword determines how much depth perspective is present in the image. Depth perspective makes
lines that are parallel in simulation space appear non-parallel in the image. A pfactor value of 0.0 means that
parallel lines will meet at infininty (1.0/pfactor), which is an orthographic rendering with no persepctive. A
pfactor value between 0.0 and 1.0 will introduce more perspective. A pfactor value > 1 will create a highly
skewed image with a large amount of perspective.

IMPORTANT NOTE: The persp keyword is not yet supported as an option.

The box keyword determines how the simulation box boundaries are rendered as thin cylinders in the image.
If no is set, then the box boundaries are not drawn and the diam setting is ignored. If yes is set, the 12 edges of
the box are drawn, with a diameter that is a fraction of the shortest box length in x,y,z (for 3d) or x,y (for 2d).
The color of the box boundaries can be set with the dump modify boxcolor command.

The axes keyword determines how the coordinate axes are rendered as thin cylinders in the image. If no is set,
then the axes are not drawn and the length and diam settings are ignored. If yes is set, 3 thin cylinders are
drawn to represent the x,y,z axes in colors red,green,blue. The origin of these cylinders will be offset from the
lower left corner of the box by 10%. The length setting determines how long the cylinders will be as a fraction
of the respective box lengths. The diam setting determines their thickness as a fraction of the shortest box
length in x,y,z (for 3d) or x,y (for 2d).

The shiny keyword determines how shiny the objects rendered in the image will appear. The sfactor value
must be a value 0.0 <= sfactor <= 1.0, where sfactor =1 is a highly reflective surface and sfactor =0 is a
rough non-shiny surface.

The ssao keyword turns on/off a screen space ambient occlusion (SSAO) model for depth shading. If yes is
set, then atoms further away from the viewer are darkened via a randomized process, which is perceived as
depth. The calculation of this effect can increase the cost of computing the image by roughly 2x. The strength
of the effect can be scaled by the dfactor parameter. If no is set, no depth shading is performed.

A series of JPG or PPM images can be converted into a movie file and then played as a movie using
commonly available tools.

Convert JPG or PPM files into an animated GIF or MPEG or other movie file:

¢ a) Use the ImageMagick convert program.

oe

convert *.jpg foo.gif
% convert —-loop 1 *.ppm foo.mpg

¢ b) Use QuickTime.
Select "Open Image Sequence" under the File menu Load the images into QuickTime to animate them
Select "Export" under the File menu Save the movie as a QuickTime movie (*.mov) or in another

format
® ¢) Windows-based tool.

If someone tells us how to do this via a common Windows-based tool, we'll post the instructions here.

dump image command 411

LIGGGHTS Users Manual

Play the movie:
¢ a) Use your browser to view an animated GIF movie.

Select "Open File" under the File menu Load the animated GIF file
¢ b) Use the freely available mplayer tool to view an MPEG movie.

% mplayer foo.mpg
¢ ¢) Use the Pizza.py animate tool, which works directly on a series of image files.

a = animate ("foo*.jpg")
® d) QuickTime and other Windows-based media players can obviously play movie files directly.

See Section _modify of the manual for information on how to add new compute and fix styles to LAMMPS to
calculate per-atom quantities which could then be output into dump files.

Restrictions:

To write JPG images, you must use a -DLAMMPS_JPEG switch when building LAMMPS and link with a
JPEQG library. See the Making LAMMPS section of the documentation for details.

Related commands:

dump, dump modify, undump

Default:
The defaults for the keywords are as follows:

¢ adiam = not specified (use diameter setting)
® atom = yes

¢ bond = none none (if no bonds in system)
® bond = atom 0.5 (if bonds in system)

e size=512512

¢ view = 60 30 (for 3d)

e view = 0 0 (for 2d)

e center =5 0.50.50.5

eup=001 (for 3d)

eup =010 (for 2d)

e zoom = 1.0

® persp = 0.0

® box = yes 0.02

¢ axes =no 0.0 0.0

® shiny = 1.0

® 55320 = NO

dump image command 412

http://www.sandia.gov/~sjplimp/pizza.html
http://www.sandia.gov/~sjplimp/pizza/doc/animate.html

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump_modify command
Syntax:
dump_modify dump-ID keyword values

e dump-ID = ID of dump to modify

¢ one or more keyword/value pairs may be appended

¢ keyword = acolor or adiam or amap or append or bcolor or bdiam or backcolor or boxcolor or color
or every or flush or format or image or label or precision or region or scale or sort or thresh or

unwrap
acolor args = type color
type = atom type or range of types (see below)
color = name of color or colorl/color2/...
adiam args = type diam
type = atom type or range of types (see below)
diam = diameter of atoms of that type (distance units)
amap args = lo hi style delta N entryl entry2 ... entryN
lo = number or min = lower bound of range of color map
hi = number or max = upper bound of range of color map
style = 2 letters = "c¢" or "d" or "s" plus "a" or "f"

"c" for continuous
"d" for discrete
"s" for sequential
"a" for absolute
"f" for fractional
delta = binsize (only used for style "s", otherwise ignored)
binsize = range is divided into bins of this width
N = # of subsequent entries
entry = value color (for continuous style)
value = number or min or max = single value within range
color = name of color used for that value
entry = lo hi color (for discrete style)
lo/hi = number or min or max = lower/upper bound of subset of range
color = name of color used for that subset of values
entry = color (for sequential style)
color = name of color used for a bin of values
append arg = yes Or no
bcolor args = type color
type = bond type or range of types (see below)
color = name of color or colorl/color2/...
bdiam args = type diam
type = bond type or range of types (see below)
diam = diameter of bonds of that type (distance units)
backcolor arg = color
color = name of color for background
boxcolor arg = color
color = name of color for box lines
color args = name R G B
name = name of color
R,G,B = red/green/blue numeric values from 0.0 to 1.0
element args = E1 E2 ... EN, where N = # of atom types
El,...,EN = element name, e.g. C or Fe or Ga
every arg = N
N = dump every this many timesteps
N can be a variable (see below)
first arg = yes or no
format arg = C-style format string for one line of output
flush arg = yes or no
image arg = yes Or no

dump_modify command 413

http://lammps.sandia.gov

LIGGGHTS Users Manual

label arg = string

string = character string (e.g. BONDS or simulation time) to use in header of dump loc

pad arg = Nchar = # of characters to convert timestep to
precision arg = power-of-10 value from 10 to 1000000
region arg = region-ID or "none"
scale arg = yes or no
sort arg = off or id or N or -N
off = no sorting of per—atom lines within a snapshot
id = sort per-atom lines by atom ID

N = sort per-atom lines in ascending order by the Nth column

-N = sort per—atom lines in descending order by the Nth column
thresh args = attribute operation value

attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style

operation = "" or ">=" or "==" or "!="

value = numeric value to compare to

these 3 args can be replaced by the word "none" to turn off thresholding
unwrap arg = yes Or no

Examples:

dump_modify 1 format "%d %d %20.15g %g %g" scale yes

dump_modify myDump image yes scale no flush yes

dump_modify 1 region mySphere thresh x <0.0 thresh epair >= 3.2

dump_modify xtcdump precision 10000

dump_modify 1 every 1000

dump_modify 1 every v_myVar

dump_modify 1 amap min max cf 0.0 3 min green 0.5 yellow max blue boxcolor red

Description:

Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump
styles.

The acolor keyword applies only to the dump image style. It can be used with the dump image command,
when its atom color setting is fype, to set the color that atoms of each type will be drawn in the image.

The specified type should be an integer from 1 to Ntypes = the number of atom types. A wildcard asterisk can
be used in place of or in conjunction with the type argument to specify a range of atom types. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk
means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color
name defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character,
e.g. red/green/blue. In the former case, that color is assigned to all the specified atom types. In the latter case,
the list of colors are assigned in a round-robin fashion to each of the specified atom types.

The adiam keyword applies only to the dump image style. It can be used with the dump image command,
when its atom diameter setting is type, to set the size that atoms of each type will be drawn in the image. The
specified type should be an integer from 1 to Ntypes. As with the acolor keyword, a wildcard asterisk can be
used as part of the fype argument to specify a range of atomt types. The specified diam is the size in whatever
distance units the input script is using, e.g. Angstroms.

The amap keyword applies only to the dump image style. It can be used with the dump image command, with
its atom keyword, when its atom setting is an atom-attribute, to setup a color map. The color map is used to
assign a specific RGB (red/green/blue) color value to an individual atom when it is drawn, based on the atom's
attribute, which is a numeric value, e.g. its x-component of velocity if the atom-attribute "vx" was specified.

dump_modify command 414

LIGGGHTS Users Manual

The basic idea of a color map is that the atom-attribute will be within a range of values, and that range is
associated with a a series of colors (e.g. red, blue, green). An atom's specific value (vx = -3.2) can then
mapped to the series of colors (e.g. halfway between red and blue), and a specific color is determined via an
interpolation procedure.

There are many possible options for the color map, enabled by the amap keyword. Here are the details.

The lo and hi settings determine the range of values allowed for the atom attribute. If numeric values are used
for lo and/or hi, then values that are lower/higher than that value are set to the value. Le. the range is static. If
lo is specified as min or hi as max then the range is dynamic, and the lower and/or upper bound will be
calculated each time an image is drawn, based on the set of atoms being visualized.

The style setting is two letters, such as "ca". The first letter is either "c" for continuous, "d" for discrete, or "s"
for sequential. The second letter is either "a" for absolute, or "f" for fractional.

A continuous color map is one in which the color changes continuously from value to value within the range.
A discrete color map is one in which discrete colors are assigned to sub-ranges of values within the range. A
sequential color map is one in which discrete colors are assigned to a sequence of sub-ranges of values
covering the entire range.

An absolute color map is one in which the values to which colors are assigned are specified explicitly as
values within the range. A fractional color map is one in which the values to which colors are assigned are
specified as a fractional portion of the range. For example if the range is from -10.0 to 10.0, and the color red
is to be assigned to atoms with a value of 5.0, then for an absolute color map the number 5.0 would be used.
But for a fractional map, the number 0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.

The delta setting must be specified for all styles, but is only used for the sequential style; otherwise the value
is ignored. It specifies the bin size to use within the range for assigning consecutive colors to. For example, if
the range is from -10.0 to 10.0 and a delta of 1.0 is used, then 20 colors will be assigned to the range. The first
will be from -10.0 <= colorl < -9.0, then 2nd from -9.0 <= color2 < -8.0, etc.

The N setting is how many entries follow. The format of the entries depends on whether the color map style is
continuous, discrete or sequential. In all cases the color setting can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

For continuous color maps, each entry has a value and a color. The value is either a number within the range
of values or min or max. The value of the first entry must be min and the value of the last entry must be max.
Any entries in between must have increasing values. Note that numeric values can be specified either as

absolute numbers or as fractions (0.0 to 1.0) of the range, depending on the "a" or "f" in the style setting for
the color map.

Here is how the entries are used to determine the color of an individual atom, given the value X of its atom
attribute. X will fall between 2 of the entry values. The color of the atom is linearly interpolated (in each of
the RGB values) between the 2 colors associated with those entries. For example, if X =-5.0 and the 2
surrounding entries are "red" at -10.0 and "blue" at 0.0, then the atom's color will be halfway between "red"
and "blue", which happens to be "purple".

For discrete color maps, each entry has a lo and hi value and a color. The lo and hi settings are either numbers
within the range of values or /o can be min or hi can be max. The lo and hi settings of the last entry must be
min and max. Other entries can have any /o and hi values and the sub-ranges of different values can overlap.
Note that numeric /o and hi values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of

non

the range, depending on the "a" or "f" in the style setting for the color map.

Here is how the entries are used to determine the color of an individual atom, given the value X of its atom

dump_modify command 415

LIGGGHTS Users Manual

attribute. The entries are scanned from first to last. The first time that /o <= X <= hi, X is assigned the color

associated with that entry. You can think of the last entry as assigning a default color (since it will always be
matched by X), and the earlier entries as colors that override the default. Also note that no interpolation of a
color RGB is done. All atoms will be drawn with one of the colors in the list of entries.

For sequential color maps, each entry has only a color. Here is how the entries are used to determine the color
of an individual atom, given the value X of its atom attribute. The range is partitioned into N bins of width
binsize. Thus X will fall in a specific bin from 1 to N, say the Mth bin. If it falls on a boundary between 2
bins, it is considered to be in the higher of the 2 bins. Each bin is assigned a color from the E entries. If E < N,
then the colors are repeated. For example if 2 entries with colors red and green are specified, then the odd
numbered bins will be red and the even bins green. The color of the atom is the color of its bin. Note that the
sequential color map is really a shorthand way of defining a discrete color map without having to specify
where all the bin boundaries are.

The append keyword applies to all dump styles except cfg and xtc and dcd. It also applies only to text output
files, not to binary or gzipped files. If specified as yes, then dump snapshots are appended to the end of an
existing dump file. If specified as no, then a new dump file will be created which will overwrite an existing
file with the same name. This keyword can only take effect if the dump_modify command is used after the
dump command, but before the first command that causes dump snapshots to be output, e.g. a run or minimize
command. Once the dump file has been opened, this keyword has no further effect.

The bcolor keyword applies only to the dump image style. It can be used with the dump image command,
with its bond keyword, when its color setting is fype, to set the color that bonds of each type will be drawn in
the image.

The specified fype should be an integer from 1 to Nbondtypes = the number of bond types. A wildcard
asterisk can be used in place of or in conjunction with the fype argument to specify a range of bond types. This
takes the form "*" or "*n" or "n*" or "m*n". If N = the number of bond types, then an asterisk with no
numeric values means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A
trailing asterisk means all types from n to N (inclusive). A middle asterisk means all types from m to n
(inclusive).

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color
name defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character,
e.g. red/green/blue. In the former case, that color is assigned to all the specified bond types. In the latter case,
the list of colors are assigned in a round-robin fashion to each of the specified bond types.

The bdiam keyword applies only to the dump image style. It can be used with the dump image command, with
its bond keyword, when its diam setting is type, to set the diameter that bonds of each type will be drawn in
the image. The specified type should be an integer from 1 to Nbondtypes. As with the bcolor keyword, a
wildcard asterisk can be used as part of the fype argument to specify a range of bond types. The specified
diam is the size in whatever distance units you are using, e.g. Angstroms.

The backcolor keyword applies only to the dump image style. It sets the background color of the images. The
color name can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify
color option.

The boxcolor keyword applies only to the dump image style. It sets the color of the simulation box drawn
around the atoms in each image. See the "dump image box" command for how to specify that a box be drawn.
The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the
dump_modify color option.

The color keyword applies only to the dump image style. It allows definition of a new color name, in addition
to the 140-predefined colors (see below), and associates 3 red/green/blue RGB values with that color name.

dump_modify command 416

LIGGGHTS Users Manual

The color name can then be used with any other dump_modify keyword that takes a color name as a value.
The RGB values should each be floating point values between 0.0 and 1.0 inclusive.

When a color name is converted to RGB values, the user-defined color names are searched first, then the 140
pre-defined color names. This means you can also use the color keyword to overwrite one of the pre-defined
color names with new RBG values.

The element keyword applies only to the the dump cfg and image styles. It associates element names (e.g. H,
C, Fe) with LAMMPS atom types. See the list of element names at the bottom of this page. In the case of
dump cfg, it allows the AtomEye visualization package to read the dump file and render atoms with the
appropriate size and color. In the case of dump image, the output images will follow the same AtomEye
convention. An element name is specified for each atom type (1 to Ntype) in the simulation. The same
element name can be given to multiple atom types.

The every keyword changes the dump frequency originally specified by the dump command to a new value.
The every keyword can be specified in one of two ways. It can be a numeric value in which case it must be >
0. Or it can be an equal-style variable, which should be specified as v_name, where name is the variable
name. In this case, the variable is evaluated at the beginning of a run to determine the next timestep at which a
dump snapshot will be written out. On that timestep, the variable will be evaluated again to determine the next
timestep, etc. Thus the variable should return timestep values. See the stagger() and logfreq() math functions
for equal-style variables, as examples of useful functions to use in this context. Other similar math functions
could easily be added as options for equal-style variables. When using the variable option with the every
keyword, you also need to use the first option if you want an initial snapshot written to the dump file. The
every keyword cannot be used with the dump dcd style.

For example, the following commands will write snapshots at timesteps
0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreqg(l10,3,10)
dump 1 all atom 100 tmp.dump
dump_modify 1 every v_s first yes

The first keyword determines whether a dump snapshot is written on the very first timestep after the dump
command is invoked. This will always occur if the current timestep is a multiple of N, the frequency specified
in the dump command, including timestep 0. But if this is not the case, a dump snapshot will only be written if
the setting of this keyword is yes. If it is no, which is the default, then it will not be written.

The flush keyword determines whether a flush operation is invoked after a dump snapshot is written to the
dump file. A flush insures the output in that file is current (no buffering by the OS), even if LAMMPS halts
before the simulation completes. Flushes cannot be performed with dump style xzc.

The text-based dump styles have a default C-style format string which simply specifies %d for integers and
%g for real values. The format keyword can be used to override the default with a new C-style format string.
Do not include a trailing "\n" newline character in the format string. This option has no effect on the dcd and
xtc dump styles since they write binary files. Note that for the cfg style, the first two fields (atom id and type)
are not actually written into the CFG file, though you must include formats for them in the format string.

The image keyword applies only to the dump atom style. If the image value is yes, 3 flags are appended to
each atom's coords which are the absolute box image of the atom in each dimension. For example, an x image
flag of -2 with a normalized coord of 0.5 means the atom is in the center of the box, but has passed thru the
box boundary 2 times and is really 2 box lengths to the left of its current coordinate. Note that for dump style
custom these various values can be printed in the dump file by using the appropriate atom attributes in the
dump command itself.

dump_modify command 417

http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A

LIGGGHTS Users Manual

The label keyword applies only to the dump local style. When it writes local informatoin, such as bond or
angle topology to a dump file, it will use the specified /abel to format the header. By default this includes 2
lines:

ITEM: NUMBER OF ENTRIES
ITEM: ENTRIES ...

The word "ENTRIES" will be replaced with the string specified, e.g. BONDS or ANGLES.

The pad keyword only applies when the dump filename is specified with a wildcard "*" character which
becomes the timestep. If pad is 0, which is the default, the timestep is converted into a string of unpadded
length, e.g. 100 or 12000 or 2000000. When pad is specified with Nchar > 0, the string is padded with leading
zeroes so they are all the same length = Nchar. For example, pad 7 would yield 0000100, 0012000, 2000000.
This can be useful so that post-processing programs can easily read the files in ascending timestep order.

The precision keyword only applies to the dump xzc style. A specified value of N means that coordinates are
stored to 1/N nanometer accuracy, e.g. for N = 1000, the coordinates are written to 1/1000 nanometer
accuracy.

The region keyword only applies to the dump custom and cfg and image styles. If specified, only atoms in the
region will be written to the dump file or included in the image. Only one region can be applied as a filter (the
last one specified). See the region command for more details. Note that a region can be defined as the "inside"
or "outside" of a geometric shape, and it can be the "union" or "intersection" of a series of simpler regions.

The scale keyword applies only to the dump arom style. A scale value of yes means atom coords are written in
normalized units from 0.0 to 1.0 in each box dimension. If the simluation box is triclinic (tilted), then all atom
coords will still be between 0.0 and 1.0. A value of no means they are written in absolute distance units (e.g.
Angstroms or sigma).

The sort keyword determines whether lines of per-atom output in a snapshot are sorted or not. A sort value of
off means they will typically be written in indeterminate order, either in serial or parallel. This is the case even
in serial if the atom modify sort option is turned on, which it is by default, to improve performance. A sort
value of id means sort the output by atom ID. A sort value of N or -N means sort the output by the value in the
Nth column of per-atom info in either ascending or descending order. The dump local style cannot be sorted
by atom ID, since there are typically multiple lines of output per atom. Some dump styles, such as dcd and
xtc, require sorting by atom ID to format the output file correctly.

IMPORTANT NOTE: Unless it is required by the dump style, sorting dump file output requires extra
overhead in terms of CPU and communication cost, as well as memory, versus unsorted output.

The thresh keyword only applies to the dump custom and cfg and image styles. Multiple thresholds can be
specified. Specifying "none" turns off all threshold criteria. If thresholds are specified, only atoms whose
attributes meet all the threshold criteria are written to the dump file or included in the image. The possible
attributes that can be tested for are the same as those that can be specified in the dump custom command, with
the exception of the element attribute, since it is not a numeric value. Note that different attributes can be
output by the dump custom command than are used as threshold criteria by the dump_modify command. E.g.
you can output the coordinates and stress of atoms whose energy is above some threshold.

The unwrap keyword only applies to the dump decd and xtc styles. If set to yes, coordinates will be written
"unwrapped" by the image flags for each atom. Unwrapped means that if the atom has passed thru a periodic
boundary one or more times, the value is printed for what the coordinate would be if it had not been wrapped
back into the periodic box. Note that these coordinates may thus be far outside the box size stored with the
snapshot.

dump_modify command 418

LIGGGHTS Users Manual

Restrictions: none

Related commands:

dump, dump image, undump

Default:
The option defaults are

e acolor = * red/green/blue/yellow/aqua/cyan

e adiam = * 1.0

® amap = min max cf 2 min blue max red

¢ append = no

® beolor = * red/green/blue/yellow/aqua/cyan

® bdiam = * 0.5

® backcolor = black

® boxcolor = yellow

e color = 140 color names are pre-defined as listed below
¢ element = "C" for every atom type

¢ every = whatever it was set to via the dump command
e first = no

e flush = yes

e format = %d and %g for each integer or floating point value
® image = no

e label = ENTRIES

epad=0

® precision = 1000

® region = none

e scale = yes

e sort = off for dump styles atom, custom, cfg, and local
e sort = id for dump styles dcd, xtc, and xyz

e thresh = none

® unwrap = no

These are the standard 109 element names that LAMMPS pre-defines for use with the dump image and
dump_modify commands.

¢ 1-10="H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne"

¢ 11-20 ="Na", "Mg", "Al", "Si", "P", "S", "CI", "Ar", "K", "Ca"
®21-30 ="Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn"
®31-40 ="Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr"

¢ 41-50 = "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn"
® 51-60 ="Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd"

¢ 61-70 = "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb"
¢ 71-80 = "Lu", "Hf", "Ta", "W", "Re", "Os", "It", "Pt", "Au", "Hg"

¢ 81-90 ="TI", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th"

¢ 91-100 = "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm"
¢ 101-109 ="Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt"

These are the 140 colors that LAMMPS pre-defines for use with the dump image and dump_modify
commands. Additional colors can be defined with the dump_modify color command. The 3 numbers listed for
each name are the RGB (red/green/blue) values. Divide each value by 255 to get the equivalent 0.0 to 1.0
value.

dump_modify command 419

LIGGGHTS Users Manual

aliceblue = 240,
248, 255

antiquewhite = 250, 235,
215

aqua = 0, 255, 255

aquamarine = 127,
255,212

azure = 240, 255,
255

beige = 245, 245,
220

bisque = 255, 228, 196

black =0, 0, 0

blanchedalmond =
255, 255, 205

blue =0, 0, 255

blueviolet = 138,
43,226

brown = 165, 42, 42

burlywood = 222, 184,
135

cadetblue = 95, 158,
160

chartreuse = 127,
255,0

chocolate = 210,
105, 30

coral = 255, 127, 80

cornflowerblue = 100,
149, 237

cornsilk = 255, 248,
220

crimson = 220,
20, 60

cyan =0, 255,255 |darkblue =0, 0,139 |darkcyan =0, 139, 139 ?gjﬁ‘;lfrl‘rl"d - fgrglﬁrgg =169,
darkgreen = 0, 100, |darkkhaki = 189, 183, |darkmagenta = 139, 0, [darkolivegreen = 85, |darkorange =

0 107 139 107, 47 255, 140, 0
o1 =130, 0.0[fsion <20 g <143 ot
darkslategray = 47, |darkturquoise = 0, 206, |darkviolet =148,0, [|deeppink =255, 20, |deepskyblue =0,
79,79 209 211 147 191, 255

dimgray = 105, 105,
105

dodgerblue = 30, 144,
255

firebrick = 178, 34, 34

floralwhite = 255,
250, 240

forestgreen = 34,
139, 34

fuchsia = 255, 0,
255

gainsboro = 220, 220,
220

ghostwhite = 248, 248,
255

gold =255, 215,0

goldenrod = 218,
165, 32

gray = 128, 128,

green =0, 128, 0

greenyellow = 173,

honeydew = 240,

hotpink = 255,

128 255,47 255,240 105, 180
indianred = 205,92,|. .. . _ khaki = 240, 230, lavender = 230,
9 indigo =75, 0, 130 ivory = 255, 240, 240 140 230,250
lavenderblush = _ lemonchiffon = 255, |lightblue = 173, 216, |lightcoral = 240,
255, 240, 245 lawngreen = 124,252, 0 1,5, 05 230 128, 128
lightcyan = 224, lightgoldenrodyellow = [lightgreen = 144, 238, [lightgrey = 211, lightpink = 255,
255, 255 250, 250, 210 144 211, 211 182, 193
lightsalmon = 255, (lightseagreen = 32, 178, |lightskyblue = 135, lightslategray = 119, |lightsteelblue =
160, 122 170 206, 250 136, 153 176, 196, 222

lightyellow = 255,

limegreen = 50, 205,

linen = 250, 240,

magenta = 255,

255, 224 lime = 0,255, 0 50 230 0,255
maroon = 128. 0. 0 mediumaquamarine = [mediumblue = 0, 0, mediumorchid = mediumpurple =
T 7102, 205, 170 205 186, 85, 211 147,112,219

mediumseagreen = |mediumslateblue = 123, |mediumspringgreen = [mediumturquoise = [mediumvioletred
60, 179, 113 104, 238 0, 250, 154 72,209, 204 =199, 21, 133
midnightblue = 25, |mintcream = 245, 255, |mistyrose = 255, 228, |moccasin = 255, navajowhite =
25,112 250 225 228, 181 255,222,173

_ _ . olivedrab = 107, orange = 255,
navy =0, 0, 128 oldlace = 253, 245, 230 |olive = 128, 128, 0 142, 35 165, 0
orangered = 255, L palegoldenrod = 238, |palegreen = 152, paleturquoise =
69, 0 orchid =218, 112, 214 1535 "170 251, 152 175,238, 238

palevioletred = 219,
112, 147

papayawhip = 255, 239,
213

peachpuff = 255, 239,
213

peru = 205, 133, 63

pink = 255, 192,
203

plum =221, 160, [powderblue = 176, 224, _ _ rosybrown =
M1 230 purple = 128, 0, 128 |red =255,0,0 188, 143, 143
royalblue = 65, 105, [saddlebrown = 139, 69, [salmon = 250, 128, sandybrown = 244, [seagreen = 46,
225 19 114 164, 96 139, 87

sienna = 160, 82, 45

dump_modify command

silver =192, 192, 192

420

LIGGGHTS Users Manual

seashell = 255, 245, skyblue = 135, 206, [slateblue = 106,
238 235 90, 205
ilzaée,:%rji/ =112, snow = 255, 250, 250 igr;nggreen =0, 255, ?tge(e):lblue =70, 130, tlazlo= 210, 180,
teal =0, 128, 128 |thistle =216, 191,216 |tomato = 253, 99, 71 tz‘gg“"ise =64, 224, g‘g’e;;%’
‘1”7}‘9‘3“ = 245,222, | hite = 255, 255, 255 ;stifezsf;"ke =245 Nellow = 255,255, 0 {gﬂogggegg =
dump_modify command 421

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

echo command
Syntax:
echo style
¢ style = none or screen or log or both
Examples:

echo both
echo log

Description:

This command determines whether LAMMPS echoes each input script command to the screen and/or log file
as it is read and processed. If an input script has errors, it can be useful to look at echoed output to see the last
command processed.

The command-line switch -echo can be used in place of this command.

Restrictions: none

Related commands: none

Default:

echo log

echo command 422

http://lammps.sandia.gov

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix command

Syntax:
fix ID group-ID style args

¢ ID = user-assigned name for the fix

¢ group-ID = ID of the group of atoms to apply the fix to

¢ style = one of a long list of possible style names (see below)
¢ args = arguments used by a particular style

Examples:

fix 1 all nve
fix 3 all nvt temp 300.0 300.0 0.01
fix mine top setforce 0.0 NULL 0.0

Description:

Set a fix that will be applied to a group of atoms. In LAMMPS, a "fix" is any operation that is applied to the
system during timestepping or minimization. Examples include updating of atom positions and velocities due
to time integration, controlling temperature, applying constraint forces to atoms, enforcing boundary
conditions, computing diagnostics, etc. There are dozens of fixes defined in LAMMPS and new ones can be

added; see this section for a discussion.

Fixes perform their operations at different stages of the timestep. If 2 or more fixes operate at the same stage
of the timestep, they are invoked in the order they were specified in the input script.

The ID of a fix can only contain alphanumeric characters and underscores.

Fixes can be deleted with the unfix command.

IMPORTANT NOTE: The unfix command is the only way to turn off a fix; simply specifying a new fix with
a similar style will not turn off the first one. This is especially important to realize for integration fixes. For
example, using a fix nve command for a second run after using a fix nvt command for the first run, will not
cancel out the NVT time integration invoked by the "fix nvt" command. Thus two time integrators would be
in place!

If you specify a new fix with the same ID and style as an existing fix, the old fix is deleted and the new one is
created (presumably with new settings). This is the same as if an "unfix" command were first performed on
the old fix, except that the new fix is kept in the same order relative to the existing fixes as the old one
originally was. Note that this operation also wipes out any additional changes made to the old fix via the
fix_modify command.

The fix modify command allows settings for some fixes to be reset. See the doc page for individual fixes for
details.

Some fixes store an internal "state" which is written to binary restart files via the restart or write restart
commands. This allows the fix to continue on with its calculations in a restarted simulation. See the

read restart command for info on how to re-specify a fix in an input script that reads a restart file. See the doc
pages for individual fixes for info on which ones can be restarted.

fix command 423

http://lammps.sandia.gov

LIGGGHTS Users Manual

Some fixes calculate one of three styles of quantities: global, per-atom, or local, which can be used by other
commands or output as described below. A global quantity is one or more system-wide values, e.g. the energy
of a wall interacting with particles. A per-atom quantity is one or more values per atom, e.g. the displacement
vector for each atom since time 0. Per-atom values are set to 0.0 for atoms not in the specified fix group.
Local quantities are calculated by each processor based on the atoms it owns, but there may be zero or more
per atoms.

Note that a single fix may produces either global or per-atom or local quantities (or none at all), but never
more than one of these.

Global, per-atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for each fix describes the style and kind of values it produces, e.g. a
per-atom vector. Some fixes produce more than one kind of a single style, e.g. a global scalar and a global
vector.

When a fix quantity is accessed, as in many of the output commands discussed below, it can be referenced via
the following bracket notation, where ID is the ID of the fix:

f ID entire scalar, vector, or array

f ID[I] |one element of vector, one column of array

f_ID[I][J] |]one element of array

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array ->
vector). Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar
fix values as input can also process elements of a vector or array.

Note that commands and variables which use fix quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
fix quantity as f_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LAMMPS, the values generated by a fix can be used in several ways:

¢ Global values can be output via the thermo_style custom or fix ave/time command. Or the values can
be referenced in a yariable equal or variable atom command.

® Per-atom values can be output via the dump custom command or the fix ave/spatial command. Or
they can be time-averaged via the fix ave/atom command or reduced by the compute reduce
command. Or the per-atom values can be referenced in an atom-style variable.

® Local values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command.

See this howto section for a summary of various LAMMPS output options, many of which involve fixes.

The results of fixes that calculate global quantities can be either "intensive" or "extensive" values. Intensive
means the value is independent of the number of atoms in the simulation, e.g. temperature. Extensive means
the value scales with the number of atoms in the simulation, e.g. total rotational kinetic energy.
Thermodynamic output will normalize extensive values by the number of atoms in the system, depending on
the "thermo_modify norm" setting. It will not normalize intensive values. If a fix value is accessed in another
way, e.g. by a variable, you may want to know whether it is an intensive or extensive value. See the doc page
for individual fixes for further info.

Each fix style has its own documentation page which describes its arguments and what it does, as listed
below. Here is an alphabetic list of fix styles available in LAMMPS:

¢ adapt - change a simulation parameter over time

fix command 424

LIGGGHTS Users Manual

¢ addforce - add a force to each atom

¢ append/atoms - append atoms to a running simulation

e aveforce - add an averaged force to each atom

® ave/atom - compute per-atom time-averaged quantities

e ave/histo - compute/output time-averaged histograms

® ave/spatial - compute/output time-averaged per-atom quantities by layer
e ave/time - compute/output global time-averaged quantities
¢ bond/break - break bonds on the fly

® bond/create - create bonds on the fly

¢ bond/swap - Monte Carlo bond swapping

® box/relax - relax box size during energy minimization

e deform - change the simulation box size/shape

® deposit - add new atoms above a surface

e drag - drag atoms towards a defined coordinate

e dt/reset - reset the timestep based on velocity, forces

e efield - impose electric field on system

¢ enforce2d - zero out z-dimension velocity and force

® evaporate - remove atoms from simulation periodically

e external - callback to an external driver program

e freeze - freeze atoms in a granular simulation

e gravity - add gravity to atoms in a granular simulation

® gcmc - grand canonical insertions/deletions

® heat - add/subtract momentum-conserving heat

e indent - impose force due to an indenter

® langevin - Langevin temperature control

e lineforce - constrain atoms to move in a line

e momentum - zero the linear and/or angular momentum of a group of atoms
® move - move atoms in a prescribed fashion

e msst - multi-scale shock technique (MSST) integration

® neb - nudged elastic band (NEB) spring forces

¢ nph - constant NPH time integration via Nose/Hoover

¢ nph/asphere - NPH for aspherical particles

¢ nph/sphere - NPH for spherical particles

¢ nphug - constant-stress Hugoniostat integration

® npt - constant NPT time integration via Nose/Hoover

¢ npt/asphere - NPT for aspherical particles

¢ npt/sphere - NPT for spherical particles

® nve - constant NVE time integration

¢ nve/asphere - NVE for aspherical particles

¢ nve/asphere/noforce - NVE for aspherical particles without forces
¢ nve/limit - NVE with limited step length

¢ nve/line - NVE for line segments

¢ nve/noforce - NVE without forces (v only)

¢ nve/sphere - NVE for spherical particles

e nve/tri - NVE for triangles

® nvt - constant NVT time integration via Nose/Hoover

¢ nvt/asphere - NVT for aspherical particles

¢ nvt/sllod - NVT for NEMD with SLLOD equations

¢ nvt/sphere - NVT for spherical particles

e orient/fcc - add grain boundary migration force

e planeforce - constrain atoms to move in a plane

® poems - constrain clusters of atoms to move as coupled rigid bodies
® pour - pour new atoms into a granular simulation domain
e press/berendsen - pressure control by Berendsen barostat

fix command

425

LIGGGHTS Users Manual

e print - print text and variables during a simulation

e reax/bonds - write out ReaxFF bond information recenter - constrain the center-of-mass position of a
group of atoms

e restrain - constrain a bond, angle, dihedral

e rigid - constrain one or more clusters of atoms to move as a rigid body with NVE integration

e rigid/nve - constrain one or more clusters of atoms to move as a rigid body with alternate NVE
integration

e rigid/nvt - constrain one or more clusters of atoms to move as a rigid body with NVT integration

o setforce - set the force on each atom

e shake - SHAKE constraints on bonds and/or angles

® spring - apply harmonic spring force to group of atoms

® spring/rg - spring on radius of gyration of group of atoms

e spring/self - spring from each atom to its origin

e srd - stochastic rotation dynamics (SRD)

e store/force - store force on each atom

® store/state - store attributes for each atom

¢ temp/berendsen - temperature control by Berendsen thermostat

¢ temp/rescale - temperature control by velocity rescaling

e thermal/conductivity - Muller-Plathe kinetic energy exchange for thermal conductivity calculation

¢ tmd - guide a group of atoms to a new configuration

e (tm - two-temperature model for electronic/atomic coupling

e viscosity - Muller-Plathe momentum exchange for viscosity calculation

® viscous - viscous damping for granular simulations

e wall/colloid - Lennard-Jones wall interacting with finite-size particles

e wall/gran - frictional wall(s) for granular simulations

e wall/harmonic - harmonic spring wall

e wall/lj126 - Lennard-Jones 12-6 wall

e wall/lj93 - Lennard-Jones 9-3 wall

e wall/piston - moving reflective piston wall

e wall/reflect - reflecting wall(s)

e wall/region - use region surface as wall

e wall/std - slip/no-slip wall for SRD particles

There are also additional fix styles submitted by users which are included in the LAMMPS distribution. The
list of these with links to the individual styles are given in the fix section of this page.

There are also additional accelerated fix styles included in the LAMMPS distribution for faster performance
on CPUs and GPUs. The list of these with links to the individual styles are given in the pair section of this

page.

Restrictions:

Some fix styles are part of specific packages. They are only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info on packages. The doc pages for individual fixes tell if it is
part of a package.

Related commands:

unfix, fix_modify

Default: none

fix command 426

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix adapt command

Syntax:

fix ID group-ID adapt N attribute args ... keyword value

¢ ID, group-ID are documented in fix command

¢ adapt = style name of this fix command

¢ N = adapt simulation settings every this many timesteps
® one or more attribute/arg pairs may be appended

e attribute = pair or kspace or atom

palir args

pstyl
ppara
I,J =
v_nam

= pstyle pparam I J v_name
e = palir style name, e.g. 1lj/cut
m = parameter to adapt over time
type pair(s) to set parameter for
e = variable with name that calculates value of pparam

kspace arg = v_name

v_name = variable with name that calculates scale factor on K-space terms
atom args = aparam v_name
aparam = parameter to adapt over time

v_nam

e = variable with name that calculates value of aparam

¢ zero or more keyword/value pairs may be appended
¢ keyword = scale or reset

scale value = no or yes

no =
yes =

the variable value is the new setting
the variable value multiplies the original setting

reset value = no or yes

Examples:

fix
fix
fix
fix

o e e

all
all
all
all

no =
yes =

adapt
adapt
adapt
adapt

Description:

values will remain altered at the end of a run
reset altered values to their original values at the end of a run

1 pair soft a 1 1 v_prefactor

1 pair soft a 2* 3 v_prefactor

1 pair 1lj/cut epsilon * * v_scalel coul/cut scale 3 3 v_scale2 scale yes reset ye
10 atom diameter v_size

Change or adapt one or more specific simulation attributes or settings over time as a simulation runs. Pair
potential and K-space and atom attributes which can be varied by this fix are discussed below. Many other
fixes can also be used to time-vary simulation parameters, e.g. the "fix deform" command will change the
simulation box size/shape and the "fix move" command will change atom positions and velocities in a
prescribed manner.

If N is specified as 0, the specified attributes are only changed once, before the simulation begins. This is all
that is needed if the associated variables are not time-dependent. If N > 0, then changes are made every N
steps during the simulation, presumably with a variable that is time-dependent.

Depending on the value of the reset keyword, attributes changed by this fix will or will not be reset back to
their original values at the end of a simulation. Even if reset is specified as yes, a restart file written during a
simulation will contain the modified settings.

fix adapt command 427

http://lammps.sandia.gov

LIGGGHTS Users Manual

IMPORTANT NOTE: Currently, only the pair and kspace params are resettable. Afom attributes are not. This
will be added at some point.

If the scale keyword is set to no, then the value the parameter is set to will be whatever the variable generates.
If the scale keyword is set to yes, then the value of the altered parameter will be the initial value of that
parameter multiplied by whatever the variable generates. l.e. the variable is now a "scale factor" applied in
(presumably) a time-varying fashion to the parameter. Internally, the parameters themselves are actually
altered; make sure you use the reset yes option if you want the parameters to be restored to their initial values
after the run.

The pair keyword enables various parameters of potentials defined by the pair_style command to be changed,
if the pair style supports it. Note that the pair_style and pair_coeff commands must be used in the usual
manner to specify these parameters initially; the fix adapt command simply overrides the parameters.

The pstyle argument is the name of the pair style. If pair_style hybrid or hybrid/overlay is used, pstyle should
be a sub-style name. For example, pstyle could be specified as "soft" or "lubricate”. The pparam argument is
the name of the parameter to change. This is the current list of pair styles and parameters that can be varied by
this fix. See the doc pages for individual pair styles and their energy formulas for the meaning of these
parameters:

=3

orn a,b,c |type pairs

c
P

uc a,c type pairs

coul/cut |scale |type pairs

coul/debye |scale |type pairs
coul/long |[scale |type pairs

1j/cut epsilon |type pairs
lj/cut/opt |epsilon [type pairs
lubricate |mu global

gauss a type pairs
soft a type pairs

IMPORTANT NOTE: It is easy to add new potentials and their parameters to this list. All it typically takes is
adding an extract() method to the pair_*.cpp file associated with the potential.

Some parameters are global settings for the pair style, e.g. the viscosity setting "mu" for pair_style lubricate.

nn

Other parameters apply to atom type pairs within the pair style, e.g. the prefactor "a" for pair_style soft.

Note that for many of the potentials, the parameter that can be varied is effectively a prefactor on the entire
energy expression for the potential, e.g. the lj/cut epsilon. The parameters listed as "scale" are exactly that,
since the energy expression for the coul/cut potential (for example) has no labeled prefactor in its formula. To
apply an effective prefactor to some potentials, multiple parameters need to be altered. For example, the
Buckingham potential needs both the A and C terms altered together. To scale the Buckingham potential, you
should thus list the pair style twice, once for A and once for C.

If a type pair parameter is specified, the / and J settings should be specified to indicate which type pairs to
apply it to. If a global parameter is specified, the I and J settings still need to be specified, but are ignored.

Similar to the pair_coeff command, I and J can be specified in one of two ways. Explicit numeric values can
be used for each, as in the 1st example above. I <=1 is required. LAMMPS sets the coefficients for the

symmetric J,I interaction to the same values.

A wild-card asterisk can be used in place of or in conjunction with the [,J arguments to set the coefficients for
multiple pairs of atom types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of atom

fix adapt command 428

LIGGGHTS Users Manual

types, then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types
from 1 to n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all
types from m to n (inclusive). Note that only type pairs with I <=J are considered; if asterisks imply type
pairs where J < I, they are ignored.

IMPROTANT NOTE: If pair_style hybrid or hybrid/overlay is being used, then the pstyle will be a sub-style
name. You must specify I,J arguments that correspond to type pair values defined (via the pair_coeff
command) for that sub-style.

The v_name argument for keyword pair is the name of an equal-style variable which will be evaluated each
time this fix is invoked to set the parameter to a new value. It should be specified as v_name, where name is
the variable name. Equal-style variables can specify formulas with various mathematical functions, and
include thermo_style command keywords for the simulation box parameters and timestep and elapsed time.
Thus it is easy to specify parameters that change as a function of time or span consecutive runs in a
continuous fashion. For the latter, see the start and stop keywords of the run command and the elaplong
keyword of thermo_style custom for details.

For example, these commands would change the prefactor coefficient of the pair_style soft potential from
10.0 to 30.0 in a linear fashion over the course of a simulation:

variable prefactor equal ramp(10,30)
fix 1 all adapt 1 pair soft a * * v_prefactor

The kspace keyword used the specified variable as a scale factor on the energy, forces, virial calculated by
whatever K-Space solver is defined by the kspace style command. If the variable has a value of 1.0, then the
solver is unaltered.

The kspace keyword works this way whether the scale keyword is set to no or yes.

The atom keyword enables various atom properties to be changed. The aparam argument is the name of the
parameter to change. This is the current list of atom parameters that can be varied by this fix:

¢ diameter = diameter of particle

The v_name argument of the atom keyword is the name of an equal-style or atom-style variable which will be
evaluated each time this fix is invoked to set the parameter to a new value. It should be specified as v_name,
where name is the variable name. See the discussion above describing the formulas associated with
equal-style or atom-style variables. The new value is assigned to the corresponding attribute for all atoms in
the fix group.

If the atom parameter is diameter and per-atom density and per-atom mass are defined for particles (e.g.
atom_style granular), then the mass of each particle is also changed when the diameter changes (density is
assumed to stay constant).

For example, these commands would shrink the diameter of all granular particles in the "center" group from
1.0 to 0.1 in a linear fashion over the course of a 1000-step simulation:

variable size equal ramp(1.0,0.1)
fix 1 center adapt 10 atom diameter v_size

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix _modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

fix adapt command 429

LIGGGHTS Users Manual
during energy minimization.

Restrictions: none

Related commands:

compute ti

Default:

The option defaults are scale = no, reset = no.

fix adapt command 430

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix addforce command

fix addforce/cuda command

Syntax:
fix ID group-ID addforce fx fy fz keyword value ...

¢ ID, group-ID are documented in fix command
¢ addforce = style name of this fix command
¢ fx fy,fz = force component values (force units)

any of fx,fy,fz can be a variable (see below)
¢ zero or more keyword/value pairs may be appended to args
¢ keyword = region or energy

region value = region-ID
region-ID = ID of region atoms must be in to have added force
energy value = v_name
v_name = variable with name that calculates the potential energy of each atom in the a

Examples:

fix kick flow addforce
fix kick flow addforce
fix ff boundary addforce

1.0 0.0 0.0
1.0 0.0 v_oscillate
0.0 0.0 v_push energy v_espace

Description:

Add fx,fy,fz to the corresponding component of force for each atom in the group. This command can be used
to give an additional push to atoms in a simulation, such as for a simulation of Poiseuille flow in a channel.

Any of the 3 quantities defining the force components can be specified as an equal-style or atom-style
variable, namely fx, fv, fz. If the value is a variable, it should be specified as v_name, where name is the
variable name. In this case, the variable will be evaluated each timestep, and its value used to determine the
force component.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent force field.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent force field with optional
time-dependence as well.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Adding a force to atoms implies a change in their potential energy as they move due to the applied force field.
For dynamics via the "run" command, this energy can be optionally added to the system's potential energy for
thermodynamic output (see below). For energy minimization via the "minimize" command, this energy must
be added to the system's potential energy to formulate a self-consistent minimization problem (see below).

fix addforce command 431

http://lammps.sandia.gov

LIGGGHTS Users Manual

The energy keyword is not allowed if the added force is a constant vector F = (fx,fy,fz), with all components
defined as numeric constants and not as variables. This is because LAMMPS can compute the energy for each
atom directly as E = -x dot F = -(x*fx + y*fy + z*fz), so that -Grad(E) = F.

The energy keyword is optional if the added force is defined with one or more variables, and if you are
performing dynamics via the run command. If the keyword is not used, LAMMPS will set the energy to 0.0,
which is typically fine for dynamics.

The energy keyword is required if the added force is defined with one or more variables, and you are
performing energy minimization via the "minimize" command. The keyword specifies the name of an
atom-style variable which is used to compute the energy of each atom as function of its position. Like
variables used for fx, fy, fz, the energy variable is specified as v_name, where name is the variable name.

Note that when the energy keyword is used during an energy minimization, you must insure that the formula
defined for the atom-style variable is consistent with the force variable formulas, i.e. that -Grad(E) = F. For
example, if the force were a spring-like F = kx, then the energy formula should be E = -0.5kx”2. If you don't
do this correctly, the minimization will not converge properly.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added
force to the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is
needed so that the minimize command can include the forces added by this fix in a consistent manner. L.e.
there is a decrease in potential energy when atoms move in the direction of the added force.

This fix computes a global scalar and a global 3-vector of forces, which can be accessed by various output
commands. The scalar is the potential energy discussed above. The vector is the total force on the group of
atoms before the forces on individual atoms are changed by the fix. The scalar and vector values calculated by
this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.
The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,

since the minimizer increments the timestep as the iteration count during the minimization.

IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the

fix addforce/cuda command 432

LIGGGHTS Users Manual

fix_modify energy option for this fix.
Restrictions: none

Related commands:

fix_setforce, fix aveforce

Default: none

fix addforce/cuda command 433

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix addtorque command

Syntax:
fix ID group-ID addtorque Tx Ty Tz

¢ ID, group-ID are documented in fix command

¢ addtorque = style name of this fix command

¢ Tx, Ty, Tz = torque component values (torque units)
¢ any of Tx,Ty,Tz can be a variable (see below)

Examples:
fix kick bead addtorque 2.0 3.0 5.0
fix kick bead addtorque 0.0 0.0 v_oscillate

Description:
Add a set of forces to each atom in the group such that:

¢ the components of the total torque applied on the group (around its center of mass) are Tx, Ty, Tz
¢ the group would move as a rigid body in the absence of other forces.

This command can be used to drive a group of atoms into rotation.

Any of the 3 quantities defining the torque components can be specified as an equal-style variable, namely Tx,
Ty, Tz. If the value is a variable, it should be specified as v_name, where name is the variable name. In this
case, the variable will be evaluated each timestep, and its value used to determine the torque component.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent torque.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added
forces to the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is
needed so that the minimize command can include the forces added by this fix in a consistent manner. L.e.
there is a decrease in potential energy when atoms move in the direction of the added forces.

This fix computes a global scalar and a global 3-vector, which can be accessed by various output commands.
The scalar is the potential energy discussed above. The vector is the total torque on the group of atoms before
the forces on individual atoms are changed by the fix. The scalar and vector values calculated by this fix are
"extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.
The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

fix addtorque command 434

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restrictions:

This fix is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:
fix_addforce

Default: none

fix addtorque command 435

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix append/atoms command

Syntax:
fix ID group-ID append/atoms face ... keyword value

¢ ID, group-ID are documented in fix command

¢ append/atoms = style name of this fix command

o face = zhi

¢ zero or more keyword/value pairs may be appended
¢ keyword = size or freq or temp or random or units

size args = Lz
Lz = z size of lattice region appended in a single event (distance units)
freq args = freq
freqg = the number of timesteps between append events
temp args = target damp seed extent
target = target velocity for region immediately ahead of the piston
damp = damping parameter (time units)
seed = random number seed for langevin kicks
extent = extent of thermostated region (distance units)
random args = xmax ymax zmax seed
xmax, ymax, zmax = maximum displacement in particular direction (distance units)
seed = random number seed for random displacement
units value = lattice or box
lattice = the wall position is defined in lattice units
box = the wall position is defined in simulation box units

Examples:

fix 1 all append/atoms zhi size 5.0 freq 295 units lattice
fix 4 all append/atoms zhi size 15.0 freqg 5 units box
fix A all append/atoms zhi size 1.0 freq 1000 units lattice

Description:

This fix creates atoms on a lattice, appended on the zhi edge of the system box. This can be useful when a
shock or wave is propagating from zlo. This allows the system to grow with time to accommodate an
expanding wave. A simulation box must already exist, which is typically created via the create box command.
Before using this command, a lattice must also be defined using the lattice command.

This fix will automatically freeze atoms on the zhi edge of the system, so that overlaps are avoided when new
atoms are appended.

The size keyword defines the size in z of the chunk of material to be added.

The random keyword will give the atoms random displacements around their lattice points to simulate some
initial temperature.

The temp keyword will cause a region to be thermostated with a Langevin thermostat on the zhi boundary.
The size of the region is measured from zhi and is set with the extent argument.

The units keyword determines the meaning of the distance units used to define a wall position, but only when
a numeric constant is used. A box value selects standard distance units as defined by the units command, e.g.
Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings. The lattice
command must have been previously used to define the lattice spacings.

fix append/atoms command 436

http://lammps.sandia.gov

LIGGGHTS Users Manual

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.
Restrictions:

This fix style is part of the SHOCK package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

The boundary on which atoms are added with append/atoms must be shrink/minimum. The opposite boundary
may be any boundary type other than periodic.

Related commands:
fix wall/piston command
Default:

The keyword defaults are size = 0.0, freq = 0, units = lattice.

fix append/atoms command 437

LIGGGHTS Users Manual
LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix atc command
Syntax:
fix ID grouplID atc type paramfile

¢ ID, group-ID are documented in fix command
® atc = style name of this fix command
® type = thermal or two_temperature or hardy

thermal = thermal coupling with field: temperature
two_temperature = electron-phonon coupling with field, temperature and electron_temperatu
hardy = Hardy on-the-fly post-processing

e paramfile = file with material parameters (not specified for hardy type)
Examples:

fix AtC atc_atoms atc thermal Ar_thermal.dat
fix AtC atc_atoms atc transfer hardy

Description:

This fix creates a coupled finite element (FE) and molecular dynamics (MD) simulation and/or an on-the-fly
estimation of continuum fields, where a FE mesh is specified and overlaps the particles, something like this:

N
\/

FREEEETRELS

YA

TAYAY,

L]

N
\/

VYV V VA

A ANAN
LT

A
A
N

[]]

[T]]

NLL

Interscale operators are defined that construct continuum fields from atomic data. Coupled simulations use FE
projection approximated on a discrete field. Currently, coupling is restricted to thermal physics. The Hardy
module can use either FE projection or integration Kernels evaluated at mesh points.

Coupling methods enable appropriate corrections to the atomic data to be made based on the FE field. For
example, a Gaussian isokinetic thermostat can apply heat sources to the atoms that varies in space on the same
scale as the FE element size. Meshes are not created automatically and must be specified on LAMMPS
regions with prescribed element sizes.

Coupling and post-processing can be combined in the same simulations using separate fix atc commands.

Note that mesh computations and storage run in serial (not parallelized) so performance will degrade when
large element counts are used.

For detailed exposition of the theory and algorithms implemented in this fix, please see the papers here and
here. Please refer to the standard finite element (FE) texts, such as this book, for the basics of FE simulation.

fix atc command 438

http://lammps.sandia.gov

LIGGGHTS Users Manual

Thermal and two_temperature (coupling) types use a Verlet time-integration algorithm. The hardy type does
not contain its own time-integrator and must be used with a separate fix that does contain one, e.g. fix nve, fix

nvt, etc.

A set of example input files with the attendant material files are included in the examples/USER/atc directory

of the LAMMPS distribution.

An extensive set of additional documentation pages for the options turned on via the fix_modify command for
this fix are inlcluded in the doc/USER/atc directory of the LAMMPS distribution. Individual doc pages are

listed and linked to below.

The following commands are typical of a coupling problem:
... commands to create and initialize the MD system

initial fix to designate coupling type and group to apply it to
tag group physics material_file
fix AtC internal atc thermal Ar_ thermal.mat

create a uniform 12 x 2 x 2 mesh that covers region contain the group
nx ny nz region periodicity
fix_modify AtC fem create mesh 12 2 2 mdRegion f p p

specify the control method for the type of coupling
physics control_type
fix_modify AtC transfer thermal control flux

specify the initial values for the empirical field "temperature"
field node_group value
fix_modify AtC transfer initial temperature all 30.0

create an output stream for nodal fields
filename output_frequency

fix_modify AtC transfer output atc_fe_output 100

run 1000

The following commands are typical of a post-processing (Hardy) problem:
... commands to create and initialize the MD system

initial fix to designate post-processing and the group to apply it to
no material file is allowed nor required
fix AtC internal atc hardy

create a uniform 1 x 1 x 1 mesh that covers region contain the group
with periodicity this effectively creats a system average
fix_modify AtC fem create mesh 1 1 1 box p p p

change from default lagrangian map to eulerian
refreshed every 100 steps
fix_modify AtC atom_element_map eulerian 100

start with no field defined
fix_modify AtC transfer fields none

add mass density, potential energy density, stress and temperature
fix_modify AtC transfer fields add density energy stress temperature

fix atc command

439

LIGGGHTS Users Manual

create an output stream for nodal fields
filename output_frequency
fix _modify AtC transfer output nvtFE 100 text

run 1000

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. The fix_modify options relevant to this fix are
listed below. No global scalar or vector or per-atom quantities are stored by this fix for access by various
output commands. No parameter of this fix can be used with the start/stop keywords of the run command.
This fix is not invoked during gnergy minimization.

Restrictions:

This fix is part of the USER-ATC package. It is only enabled if LAMMPS was built with that package, which
also requires the ATC library be built and linked with LAMMPS. See the Making LAMMPS section for more
info.

Related commands:

After specifying this fix in your input script, several other fix_modify commands are used to setup the
problem, e.g. define the finite element mesh and prescribe initial and boundary conditions.

fix_modify commands for setup:

e fix modify AtC fem create mesh

e fix modify AtC mesh create nodeset

¢ fix modify AtC mesh create faceset

¢ fix modify AtC mesh create elementset

e fix modify AtC transfer internal

e fix modify AtC transfer boundar

e fix modify AtC transfer internal gquadrature
e fix modify AtC transfer pmfc

e fix modify AtC extrinsic electron integration

fix_modify commands for boundary and initial conditions:

e fix modify AtC transfer initial

¢ fix modify AtC transfer fix

¢ fix modify AtC transfer unfix

e fix modify AtC transfer fix flux

e fix modify AtC transferunfix flux

e fix modify AtC transfer source

¢ fix modify AtC transfer remove source

fix_modify commands for control and filtering:
e fix_modify AtC transfer thermal control
e fix_modify AtC transfer filter
e fix_modify AtC transfer filter scale
e fix_modify AtC transfer equilibrium_start

e fix_modify AtC extrinsic exchange

fix_modify commands for output:

fix atc command 440

LIGGGHTS Users Manual

e fix modify AtC transfer output

e fix modify AtC transfer atomic output
¢ fix modify AtC mesh output

e fix modify AtC transfer write restart
e fix modify AtC transfer read restart

fix_modify commands for post-processing:

e fix modify AtC transfer fields

¢ fix modify AtC transfer gradients
e fix modify AtC transfer rates

e fix modify AtC transfer computes
e fix modify AtC set

e fix modify AtC transfer on the fl
¢ fix modify AtC boundary integral
e fix modify AtC contour integral

miscellaneous fix_modify commands:

e fix modify AtC transfer atom element ma
e fix modify AtC transfer neighbor reset frequenc

Default: none

(Wagner) Wagner, Jones, Templeton, Parks, Special Issue of Computer Methods and Applied Mechanics,
197, 3351-3365 (2008).

(Zimmerman) Zimmerman, Webb, Hoyt, Jones, Klein, Bammann, Special Issue of Modelling and
Simulation in Materials Science and Engineering, 12, S319 (2004).

(Hughes) T.J.R Hughes, "The Finite Element Method," Dover (2003).

fix atc command 441

LIGGGHTS Users Manual

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/atom command

Syntax:
fix ID group-ID ave/atom Nevery Nrepeat Nfreq valuel value2

¢ ID, group-ID are documented in fix command

¢ ave/atom = style name of this fix command

¢ Nevery = use input values every this many timesteps

¢ Nrepeat = # of times to use input values for calculating averages

¢ Nfreq = calculate averages every this many timesteps one or more input values can be listed
¢ value =X, Y, z, VX, vy, vz, fx, fy, {z, c_ID, c_ID[i], f{_ID, f_ID[i], v_name

X,v,2,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
c_ID = per-atom vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom array calculated by a compute with ID

f_ID = per-atom vector calculated by a fix with ID

f_ID[I] = Ith column of per-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name

Examples:

fix 1 all ave/atom 1 100 100 vx vy vz
fix 1 all ave/atom 10 20 1000 c_my_stress[1]

Description:

Use one or more per-atom vectors as inputs every few timesteps, and average them atom by atom over longer
timescales. The resulting per-atom averages can be used by other output commands such as the fix ave/spatial
or dump custom commands.

The group specified with the command means only atoms within the group have their averages computed.
Results are set to 0.0 for atoms not in the group.

Each input value can be an atom attribute (position, velocity, force comp